Connect with us

News

The very real challenge of a Tesla Pickup Truck

Published

on

Call it the Tesla Truck, the Tesla Pickup Truck, or the Tesla-150, but CEO Elon Musk has made it clear as revealed in the company’s Master Plan, Part Deux that the electric carmaker plans to make a pickup and heavy-duty truck. In fact, he couldn’t be clearer: he stated in the past that plans call for something to compete with the best-selling light-duty vehicle on American roads: the Ford F-150. This precludes the idea of a small or mid-sized Tesla truck and says that Musk seems to be clearly aiming for a full-sized offering.

Tesla-PickupA full-sized electric truck seems like a lark to most truck owners and enthusiasts. I live in the heart of truck country, Wyoming, where pickup trucks equal passenger cars in numbers on the road and range from half-ton F-150s, 1500s, and Silverados to heavy-duty and diesel-driven duals. Although many enjoy scoffing at the wannabe cowboys who buy a big, shiny pickup and drive it to the office and back every day – never seeing dirt or any load larger than an IKEA furniture set – the core truck buyer and, indeed, the majority of truck owners do not fit that stereotype.

In general, truck owners fall into three categories: weekend warriors, offroaders, and workhorses. The weekend warrior uses a truck to tow toys (boats, RVs, what have you) and occasionally haul household construction goods for home improvement. The offroader buys the TRD, Pro-4X, and similar packages and spends a lot of time getting mud, dirt, and tree branches stuck on the truck (this would be my personal category, for the record). Finally, the workhorses are those who buy a truck to work with, either as a commercial vehicle or as a personal working machine – these include farmers, ranchers, commercial haulers, tradesmen, and so forth.

Traditionally, the largest truck market are the weekend warriors. These are the folks who buy a truck because they want to haul the family and their playthings around. They tow boats, jet skis, haul camping stuff, tote gear to the game, tailgate, and otherwise use their truck mostly as a recreational vehicle that may or may not be their everyday driver. Next to that market, and not as small as some might expect, are the workhorse buyers. These are the people who buy trucks to work with them and rely on them to get any of a number of jobs done. Most importantly to the industry, these are the repeat buyers – the ones who buy, trade-in and buy again (rinse, repeat). Where I live, for example, it’s not unusual for a rancher to buy a new truck every two or three years. Trading in a machine that will have over 100,000 miles on it is not unusual either. That’s 30,000-50,000 miles driven in only one year. For reference, as a commercial over-the-road driver, I put a little over 100,000 miles per year on my rig. Surveys of the truck market nationally show that in the traditional truck strongholds of the West, including Texas on up to the Dakotas and over to the coast, that kind of mileage is not unusual for the working pickup.

So let’s assume that Tesla plans to make a truck that will sell on the traditional pickup truck market in competition with the best-sellers from Ford, GM, and Ram. We can assume they won’t be doing a hard-core off-road package, but will aim for a 4×4 market in order to appeal to most truck buyers. Here’s a bullet list of criteria for a mainstream Tesla Truck offering, based on the most common features of a mainstream full-size pickup truck today:

  • V8-like performance including roughly 400 hp and 380 lb-ft
  • Extended and four-door cab offerings
  • Cargo bed size of 5.5 feet with option for 7 feet
  • Towing capacity of about 10,000 pounds
  • Payload capacity of 1/2 ton to 3,000 pounds
  • 4×4 capability
  • Driving range, under load, of at least 150 miles
  • Conventional styling and appeal

Those criteria make up the most common things truck buyers ask for. The recent revamp of the Toyota Tundra, for example, was mostly about style since the previous-generation Tundra was dated and didn’t look like a “beefy truck,” as one friend put it. This may be laughed at by the Teslarati, but it’s akin to the Model S having been designed to look like the Volkswagen Thing rather than the beautiful Euro-styled sedan it is. So don’t scoff.

2014 Toyota Tundra 1794 - sky2 - AOA 1200px

Now that we have those basic requirements, let’s look at what Elon and Tesla would have to accomplish to make that happen.

Advertisement

For starters, the current powertrain in the Model S or Model X would not be sufficient. If put under load, towing a trailer for example, and with the aerodynamics of a pickup, the current powertrain would be lucky to achieve half the range required. Anyone who doubts this need only consider how much work went into Bob Lutz’ never-selling VIA truck and its plug-in hybrid powertrain, which together only produce marginal range when trailering at capacity. That’s an ICE (internal combustion engine) and electric drivetrain combined. Remember also that every pound of batteries added has a net-reduced benefit to the overall range of the vehicle as it also adds weight. Since Tesla isn’t currently using and hasn’t made a lot of noise about eventually using high-tech, high-density, bleeding-edge lithium batteries to lighten the battery’s weight, we can assume that the current Panasonic cells are what would power a Tesla Truck if it were made in the near future.

To tow a trailer at 7,000+ pounds would require an enormous amount of energy and to do so for a long range like truck owners would expect (e.g. to the lake and back) would be a feat. It’s not insurmountable, of course. There’s little doubt that Tesla’s engineers couldn’t overcome this obstacle, but it will be a huge one.

Matching V8-like performance would not be difficult – the Model S and Model X already does this and with the inherent strengths of an electric motor, namely torque from zero, the numbers actually required would be smaller than those needed for the gasoline equivalent.

Next comes another problem – off-road. With the problems the Model S has had in the past with undercarriage breaches on the highway, it’s easy to see concern when going fully off the road. Even the best of dirt roads are rough. Putting an under-pan, as Tesla has done may or may not work well with a truck. Skid plates are not unusual for trucks, of course, but they rarely run past the front engine compartment. Most of the safety is addressed by lifting components high up into the framing to minimize exposure. With a big, long, heavy battery pack, though, this is problematic. A skid plate may do the trick, but this would at the very least be a big marketing hassle for Tesla if nothing else.

Another big roadblock is going to be the price tag. In order to compete with the F-150 and its brethren, the Tesla Truck would need to sell at around the $30,000-$40,000 mark at entry-level. Truck buyers would probably be willing to pay a premium of $8,000, even $10,000 on the truck if the expected fuel savings are big and obvious. Yet even that premium markup is going to be a problem for Tesla because, well, unless of course the pickup will be based off the Model 3. This is where the Gigafactory could possibly pay off, but at this point, that is only an idea that is likely to become reality, but until it is, we have no idea how real its cost-savings in terms of dollars per kWh will be.

Advertisement

Finally, for sake of space, we have not even mentioned dealership woes. The top truck markets are well outside of Tesla’s best markets for the Model S and Model X. Some of those markets, such as Texas, are off limits to Tesla’s direct sales entirely. Yet if that’s overcome, there’s also marketing. Not only are pickup truck buyers exceedingly brand loyal (just ask Toyota and Nissan how easy it is to penetrate the full-sized market), but they’re finicky as well.

The conclusion? Tesla could likely, eventually, field a full-sized pickup truck capable of competing with the F-150, but the challenges are huge. Just as Elon likes ’em. Will they do it? Good question, but it’s fair to say that if they do, they may be treading on the thin crust of a deep, deep lake.

Feature image via Topspeed

Aaron Turpen is a freelance writer based in Wyoming, USA. He writes about a large number of subjects, many of which are in the transportation and automotive arenas. Aaron is a recognized automotive journalist, with a background in commercial trucking and automotive repair. He is a member of the Rocky Mountain Automotive Press (RMAP) and Aaron’s work has appeared on many websites, in print, and on local and national radio broadcasts including NPR’s All Things Considered and on Carfax.com.

Comments

News

Tesla and Arevon team up on 172-Megapack solar plus project

One of Tesla’s largest Megapack sites, the Arevon Eland solar project is supported by an impressive 1.2GWh of Megapacks.

Published

on

Tesla Megapack
Credit: Tesla

Tesla and partner Arevon have completed the second phase of an energy storage site in Southern California, as highlighted in a short video shared this week.

On Monday, Tesla’s Megapack account on X posted a brief video on the Kern County, California “Eland” storage site, which was recently expanded to offer 300MW/1.2GWh of Megapacks supporting 758MW of solar. The so-called “Eland Solar-plus-Storage Project” site now features 172 Megapack units and 1.36 million solar panels, which the companies have previously said is roughly enough to power 200,000 homes annually.

In the video, Tesla also notes that the facility has site-level controls to regulate power output, “providing a firm resource to the grid,” and supporting the Los Angeles climate goal of reaching 100-percent renewable electricity by 2035. You can check out the clip below.

Advertisement

READ MORE ON TESLA MEGAPACKS: Tesla Megapack project in California housed in former steam plant

Arevon announced the official start of operations for Eland 1 in December with 150MW/600 MWh, and the Eland 2 phase has effectively doubled this. The company also appears to be on track for its targeted opening of Eland 2 in Q1 this year, though it’s not clear at the time of writing if Arevon has yet announced a start of operations for the second phase.

Last February, Arevon announced that it secured a $1.1 billion financial commitment for the remaining parts of the Eland 2 Solar-plus-Storage project, together with Eland 1 becoming one of the largest solar-plus-storage installations in the U.S. The projects also include a long-term purchase agreement from the Southern California Public Power Authority, which plans to facilitate contracts for the LA Department of Water and Power and Glendale Water and Power.

Tesla’s grid-scale Megapack batteries can store and deploy generated energy to the electrical grid, especially during periods of peak power usage, high demand, or outages. Coupled with solar or other energy sources in these kinds of solar-plus-storage sites, Tesla’s Megapacks can help support renewable energy for long periods of time, or at least add stability to the grid.

Advertisement

Over the past couple of years, Tesla has been deploying large-scale Megapack projects in markets around the world, as backed by an initial production facility in Lathrop, California. This “Megafactory” aims to eventually produce 10,000 Megapack units, or 40 GWh, per year, and it has been ramping up production since late 2022.

In November, the Lathrop Megafactory officially produced its 10,000th Megapack, and Tesla also started production at a second Megapack plant in Shanghai, China last month, after starting construction on the site last May. The Shanghai Megafactory is also expected to have a volume annual production of 10,000 units per year.

Additionally, Tesla has teased plans for a third Megafactory, though it has yet to disclose where such a facility would be built.

Tesla’s massive Megapack site near Melbourne is almost ready

Advertisement
Continue Reading

News

Tesla reveals Cybercab battery pack and range efficiency

Tesla aims to make the Cybercab the most efficient EV available, as executives revealed in an interview this week.

Published

on

Two of the top Tesla executives recently spoke about the Cybercab in an interview with a longtime manufacturing industry expert, sharing details about the electric vehicle’s (EV’s) battery pack size, range, and more.

On Monday, Tesla’s VP of Vehicle Engineering Lars Moravy and Senior Design Executive Franz von Holzhausen told manufacturing industry veteran Sandy Munro that Tesla is targeting a battery pack of under 50kWh for the Cybercab, with “close to” 300 miles of real-world range. This would make the two-seater more efficient than any other EV currently in production, partially due to the two-seater’s highly-aerodynamic design.

Munro says he was expecting a battery pack ranging from 55kWh to 60 kWh, noting how much smaller Tesla is aiming to go. Before revealing the range targets, Moravy also detailed how the Cybercab’s aero wheel covers offer optimal aerodynamics to contribute to the impressive efficiency level.

“As much as Franz hates door handles, I hate the wheel-tire interaction, and this is really the best way for us to get the most aerodynamic wheel-tire we could get,” Moravy explains.

From the wheel covers to the overall design, however, von Holzhausen explains how much thought has gone into making the vehicle so efficient—even down to its shape.

Advertisement

“This car is actually really unique in terms of its teardrop shape,” von Holzhausen said. “It’s actually quite narrow in the rear compared to the front. Obviously, you covered the discs, but the aero efficiency is a huge factor in getting to higher range with a smaller battery pack.”

The fact that the vehicle only has two seats also contributes to some of the design choices Tesla was able to implement, as the executive continues to explain.

“Really, because it’s a two-seater we were able to really narrow the hips on this car, and when you come to the rear, you actually start to see how narrow it is, but it’s not unattractive,” he adds.

Credit: Tesla | X

READ MORE ON TESLA CYBERCAB: Tesla reveals design inspiration behind Cybercab’s gold color

Moravy reiterates that Tesla is already starting to install production equipment for the Cybercab at Gigafactory Texas, which was revealed in a shareholder’s letter in late January. He also echoes plans that Tesla is aiming for prototype builds for the Cybercab by this summer, along with a launch event around early 2026.

In recent weeks, increasing numbers of Cybercabs have also been seen testing at Giga Texas, and longtime drone pilot and factory observer Joe Tegtmeyer said that he saw as many as six driving around the site on Monday.

Last month, Moravy also alluded to plans to make the Cybercab “road-trip-capable,” going long distances with wireless charging along the way to make it completely autonomous for passengers.

Advertisement

Along with talking about the Cybercab’s super-efficient design, the two executives also reiterate discussions about the art deco-inspired design of the robotaxi and the larger Robovan, both of which were unveiled in an event in October. Munro and the executives also go on to sit inside the Robovan while talking a bit about its design.

You can see footage from Teslarati‘s first full ride in the Cybercab below, as captured at the “We, Robot” event in Southern California. Or, check out the full Cybercab and Robovan episode from Munro, Moravy, and von Holzhausen below that, clocking in at just under 25 minutes.

Advertisement

Tesla says its Cybercab wireless charging efficiency is ‘well above 90%’

Continue Reading

News

SpaceX rescue mission for stranded ISS astronauts nears end — Here’s when they’ll return home

Published

on

Credit: SpaceX

SpaceX is ready to bring home Butch Wilmore and Suni Williams, the two astronauts that have been stranded on the International Space Station (ISS) for nine months.

Last week, SpaceX launched its Crew-10 mission, which would dock onto the ISS late Saturday night and be the two astronauts’ ride home. Now, the end is in sight, and it appears both NASA and SpaceX are planning to have the two home this week, perhaps earlier than expected.

SpaceX readies to rescue astronauts from International Space Station

The agency and the company have announced that Dragon will autonomously undock from the ISS on Tuesday at 1:05 a.m. ET and should re-enter Earth’s atmosphere and splashdown off the Florida coast about 17 hours later.

SpaceX said:

Advertisement

“SpaceX and NASA are targeting Tuesday, March 18 at 1:05 a.m. ET for Dragon to autonomously undock from the International Space Station. After performing a series of departure burns to move away from the space station, Dragon will conduct multiple orbit-lowering maneuvers, jettison the trunk, and re-enter Earth’s atmosphere for splashdown off the coast of Florida approximately 17 hours later the same day.”

Crew-9 astronaut Nick Hague will be alongside Williams and Wilmore on the flight home, along with Roscosmos cosmonaut Aleksandr Gorbunov. Hague and Gorbunov have been in space since Saturday, September 28.

SpaceX was tasked with bringing Wilmore and Williams home after the Boeing Starliner that sent them there was determined not to be suitable for their return.

A report from the New York Post in late August said that Boeing employees routinely made fun of SpaceX workers, only for the company to bail them out:

SpaceX bails out Boeing and employees are reportedly ‘humiliated’

Advertisement

Crew-10 will bring the astronauts home, ending an extensive and unscheduled stay in space.

Continue Reading

Trending