News
SpaceX had a big year: 2016 year in review
On December 21, 2016, SpaceX celebrated the one-year anniversary of Falcon 9’s first ever successful stage one landing, leaving their mark on history with the first rocket to ever do so after delivering a payload into orbit. The mission delivered 11 ORBCOMM satellites into low-Earth orbit to complete a 17-satellite constellation network.
Several videos were published with footage of the event last year, but National Geographic gave us a behind-the-scenes look at Elon Musk’s emotional ride while it was happening as an anniversary treat.
The first landing anniversary wasn’t the only thing to come out of 2016, however, and what a year it was!
MORE HISTORIC SPACEX LANDINGS
On April 8, 2016, SpaceX made history again, that time by landing Falcon 9’s first stage booster onto the “Of Course I Still Love You” autonomous droneship in the Atlantic Ocean off the Florida coast. The mission’s payload was a Dragon capsule cargo shipment to the International Space Station (“ISS”) named CRS-8, itself containing an important space technology demonstration for expandable habitats. The Bigelow Expandable Activity Module (“BEAM”) carried in the Dragon capsule was later successfully docked to the ISS and inflated as planned.
On May 5, 2016, SpaceX landed yet another first stage booster on drone ship “Of Course I Still Love You”, but the destination of its payload was geostationary transfer orbit (“GTO”), about 36,000 kilometers above the Earth vs. the 160 to 2000 kilometer height of low-Earth orbit previously achieved before a landing. The higher GTO orbit brought the first stage of Falcon 9 to a much faster speed and higher reentry heating than the previous missions, making the successful landing yet another one for the history books. Its payload was the JCSAT-14 commercial communications satellite.
Another successful GTO mission with a droneship landing was completed on May 27, 2016, and its THAICOM-8 payload was then delivered to a supersynchronous transfer orbit of 91,000 kilometers high. The third time broke the charm, however, and on June 15, 2016, after a successful insertion of Eutelsat 117 West B and ABS-2A satellites into GTO, the Falcon 9 first stage was lost due to early engine shutdown from lack of fuel.
Looks like early liquid oxygen depletion caused engine shutdown just above the deck pic.twitter.com/Sa6uCkpknY
— Elon Musk (@elonmusk) June 17, 2016
Undeterred, SpaceX successfully landed one more booster on August 16, 2016 during its JCSAT-16 mission to GTO. “Of Course I Still Love You” was the droneship used once again.
First stage landing confirmed on the droneship. Second stage & JCSAT-16 continuing to orbit https://t.co/tdni5406Hi pic.twitter.com/h6llIXSVu7
— SpaceX (@SpaceX) August 14, 2016
A FEW SETBACKS FOR SPACEX
September 1, 2016 is a day that will potentially live in both conspiratorial and procedural dispute infamy due to SpaceX’s launch pad anomaly during its fueling process. Whether the description of choice of the event is “fast fire”, “explosion”, or “fireball”, the result was the same: a complete loss of the Falcon 9 rocket, its payload, and the ability to use Space Launch Complex 40 in the near future.
Still working on the Falcon fireball investigation. Turning out to be the most difficult and complex failure we have ever had in 14 years.
— Elon Musk (@elonmusk) September 9, 2016
The AMOS-6 satellite aboard the rocket was owned by Israel-based Spacecom Ltd. and had been part of a $95 million dollar leasing deal between Facebook and Eutelsat to provide internet access to the non-connected parts of the world.
Per SpaceX’s last update, the investigation and FAA report on the anomaly are still pending and have focused on a breach in the loading of the cryogenic helium system of the 2nd stage liquid oxygen (“LOX”) tank.
Loss of Falcon vehicle today during propellant fill operation. Originated around upper stage oxygen tank. Cause still unknown. More soon.
— Elon Musk (@elonmusk) September 1, 2016
Falcon 9 isn’t expected to return to flight until January 2017 now that the launch with the Iridium-1 satellite payload was delayed from the tentative December 16th date. The FAA report must be completed prior to further launch approvals. The chain reaction of delayed launches has only cost the loss of one SpaceX customer to another launch provider thus far.
Due to extensive damage to Space Launch Complex 40 from the anomaly, future launches from the east coast will take place from historic Apollo-era Launch Complex 39A. SpaceX has been renovating the pad for Falcon Heavy launches. Also resulting from the anomaly was a delay in the first Falcon Heavy launch to early 2017.
SPACEX PUSHES ONWARD
Throughout 2016, SpaceX continued to work on its Crew Dragon capsule as part of its competition with Boeing to provide human flight capabilities from American soil via NASA’s Commercial Crew Program. The tentative test launch date for the capsule was set for late 2017, but unfortunately, it was pushed back into May of 2018. Earlier in the year, Boeing also delayed its launch date to August 2018.
ELON MUSK REVEALS SPACEX’S MARS PLAN
Finally, at the end of September, Elon announced SpaceX’s plan to put a million people on Mars by the 2060s via its Interplanetary Transport System, also affectionately named BFR (“Big F*ing Rocket”).
Full Interplanetary Tranport System presentation in ~30 mins. Simulation preview: https://t.co/lKAxabzfKX
— Elon Musk (@elonmusk) September 27, 2016
A video was released prior to the September 27th, 2016 International Astronautical Conference announcement in Guadalajara, Mexico illustrating the full system concept. The animation was based on the actual CAD renderings in development, per Elon’s talk.
Plenty of goodies were revealed about SpaceX’s plans including the passenger habitat, entertainment intentions for travelers, and technical specifications surrounding the system’s size, engines, and fuel systems. While the presentation itself was exciting, many questions were still left unanswered such as more specifics on radiation dangers and the long-term effects of microgravity.
SUMMARY
Overall, 2016 brought a rollercoaster of successes and setbacks for SpaceX, but the business of rocket launching wasn’t expected to be an easy one. The phrase, “Rockets are hard” isn’t a simple excuse to explain away failures, but rather an accepted cost of being in the field.
Throughout the year, SpaceX has managed to maintain public and government faith in its mission to advance human space exploration despite any setbacks. In July, NASA ordered a second commercial crew mission from the company, and then they followed up in November with a contract to launch an Earth surface-water-analyzing satellite in 2021.
SpaceX also received a number of recognitions for its work environment and achievements, including making Glassdoor’s Top 50 Places to Work and being awarded the 2016 World Technology Award for space.
Oh, and if it seems all that isn’t enough for SpaceX to have on its plate, in November the company filed a request with the FCC to launch over 4,000 communication satellites as part of their goal of building a hi-speed satellite internet constellation.
There’s a lot to look forward to in 2017 and beyond. Onwards!
Elon Musk
Tesla engineers deflected calls from this tech giant’s now-defunct EV project
Tesla engineers deflected calls from Apple on a daily basis while the tech giant was developing its now-defunct electric vehicle program, which was known as “Project Titan.”
Back in 2022 and 2023, Apple was developing an EV in a top-secret internal fashion, hoping to launch it by 2028 with a fully autonomous driving suite.
However, Apple bailed on the project in early 2024, as Project Titan abandoned the project in an email to over 2,000 employees. The company had backtracked its expectations for the vehicle on several occasions, initially hoping to launch it with no human driving controls and only with an autonomous driving suite.
Apple canceling its EV has drawn a wide array of reactions across tech
It then planned for a 2028 launch with “limited autonomous driving.” But it seemed to be a bit of a concession at that point; Apple was not prepared to take on industry giants like Tesla.
Wedbush’s Dan Ives noted in a communication to investors that, “The writing was on the wall for Apple with a much different EV landscape forming that would have made this an uphill battle. Most of these Project Titan engineers are now all focused on AI at Apple, which is the right move.”
Apple did all it could to develop a competitive EV that would attract car buyers, including attempting to poach top talent from Tesla.
In a new podcast interview with Tesla CEO Elon Musk, it was revealed that Apple had been calling Tesla engineers nonstop during its development of the now-defunct project. Musk said the engineers “just unplugged their phones.”
Musk said in full:
“They were carpet bombing Tesla with recruiting calls. Engineers just unplugged their phones. Their opening offer without any interview would be double the compensation at Tesla.”
Interestingly, Apple had acquired some ex-Tesla employees for its project, like Senior Director of Engineering Dr. Michael Schwekutsch, who eventually left for Archer Aviation.
Tesla took no legal action against Apple for attempting to poach its employees, as it has with other companies. It came after EV rival Rivian in mid-2020, after stating an “alarming pattern” of poaching employees was noticed.
Elon Musk
Tesla to a $100T market cap? Elon Musk’s response may shock you
There are a lot of Tesla bulls out there who have astronomical expectations for the company, especially as its arm of reach has gone well past automotive and energy and entered artificial intelligence and robotics.
However, some of the most bullish Tesla investors believe the company could become worth $100 trillion, and CEO Elon Musk does not believe that number is completely out of the question, even if it sounds almost ridiculous.
To put that number into perspective, the top ten most valuable companies in the world — NVIDIA, Apple, Alphabet, Microsoft, Amazon, TSMC, Meta, Saudi Aramco, Broadcom, and Tesla — are worth roughly $26 trillion.
Will Tesla join the fold? Predicting a triple merger with SpaceX and xAI
Cathie Wood of ARK Invest believes the number is reasonable considering Tesla’s long-reaching industry ambitions:
“…in the world of AI, what do you have to have to win? You have to have proprietary data, and think about all the proprietary data he has, different kinds of proprietary data. Tesla, the language of the road; Neuralink, multiomics data; nobody else has that data. X, nobody else has that data either. I could see $100 trillion. I think it’s going to happen because of convergence. I think Tesla is the leading candidate [for $100 trillion] for the reason I just said.”
Musk said late last year that all of his companies seem to be “heading toward convergence,” and it’s started to come to fruition. Tesla invested in xAI, as revealed in its Q4 Earnings Shareholder Deck, and SpaceX recently acquired xAI, marking the first step in the potential for a massive umbrella of companies under Musk’s watch.
SpaceX officially acquires xAI, merging rockets with AI expertise
Now that it is happening, it seems Musk is even more enthusiastic about a massive valuation that would swell to nearly four-times the value of the top ten most valuable companies in the world currently, as he said on X, the idea of a $100 trillion valuation is “not impossible.”
It’s not impossible
— Elon Musk (@elonmusk) February 6, 2026
Tesla is not just a car company. With its many projects, including the launch of Robotaxi, the progress of the Optimus robot, and its AI ambitions, it has the potential to continue gaining value at an accelerating rate.
Musk’s comments show his confidence in Tesla’s numerous projects, especially as some begin to mature and some head toward their initial stages.
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”


