News
SpaceX’s Crew Dragon preps for debut as race to return astronauts to US craft nears final stages
After spending two weeks testing in a specialized NASA-run facility, SpaceX’s first flightworthy Crew Dragon spacecraft was shipped from Ohio to Florida, where it will now spend a number of months preparing for its first (uncrewed) launch into Earth orbit.
Known as Demonstration Mission 1 (DM-1), this critical milestone must be passed before the capsule will be certified to carry NASA astronauts to the International Space Station (ISS) sometime in 2019. While DM-1 will not sport a human crew, the spacecraft is nevertheless expected to demonstrate all life and mission-critical components, ranging from Crew Dragon’s complex array of avionics and ground/orbital communications equipment to craft’s ability to safely return passengers to Earth with a soft ocean landing.
SpaceX’s Crew Dragon spacecraft has been in the serious hardware development phase for approximately five years, although the concept itself dates back about as early as its Cargo Dragon predecessor – 2005 to 2006, publicly. Over the course of roughly two weeks of testing at NASA’s Plum Brook Station, Crew Dragon was likely subjected to a suite of environmental conditions the spacecraft will need to routinely survive to make it through initial launch and successfully operate under the rigors of microgravity and thermal vacuum conditions.
Crew Dragon arrived in Florida this week ahead of its first flight after completing thermal vacuum and acoustic testing at @NASA’s Plum Brook Station in Ohio. https://t.co/xXJE8TjcTr pic.twitter.com/lr0P95zzIK
— SpaceX (@SpaceX) July 12, 2018
Given the DM-1 capsule and trunk’s fairly quick jaunt at the huge Plum Brook vacuum chamber and equally quick arrival in Florida, those test results were likely quite favorable. Still, a major amount of work lies ahead before the first full Crew Dragon is ready for its launch atop Falcon 9. Most significantly, the craft’s trunk did not follow its fellow capsule to Florida, but rather returned to SpaceX’s Hawthorne, CA factory to be outfitted with critical flight hardware, particularly radiators and solar arrays. Once that outfit is complete, the module will also be shipped to Florida before being integrated with the DM-1 Crew Dragon capsule.
Of note, the DM-1 capsule has been constructed from the start to support a plan to use the vehicle in an in-flight abort test meant to ensure that the craft can wrest its passengers from harm’s way even at the most intense point of launch, where aerodynamic pressures are at their peak. In order to properly support both the DM-1 orbital mission and the in-flight abort test to follow, the capsule has been outfitted with a fair amount (hundreds of pounds) of hardware that will be unique to the pathfinder spacecraft. This understandably adds its own complexity to the already intense program’s first orbital mission, although it will hopefully not translate into additional delays.
- NASA Astronaut Suni Williams, fully suited in SpaceX’s spacesuit, interfaces with the display inside a mock-up of the Crew Dragon spacecraft in Hawthorne, California, during a testing exercise on April 3. (SpaceX)
- SpaceX’s Demo Mission-1 Crew Dragon seen preparing for vacuum tests at a NASA-run facility, June 2018. (SpaceX)
- Crew Dragon parachute tests are likely to continue into the summer to ensure NASA certification in time for DM-1. (SpaceX)
SpaceX competitor’s crewed spacecraft and rocket take shape
It’s worth noting that SpaceX is effectively operating at a distinct – albeit partially self-wrought – financial handicap when compared with Boeing’s Starliner spacecraft program, one of two vehicles funded by NASA to accomplish the same task of safely and reliably transporting astronauts to and from the ISS.
“NASA awarded firm-fixed-price contracts in 2014 to Boeing and Space Exploration Technologies Corporation (SpaceX) [of] up to $4.2 billion [for Boeing] and $2.6 billion [for SpaceX] for the development of crew transportation systems.” (GAO-18-476)
- Boeing’s DM-2 Starliner undergoes integration in Florida earlier this year. (Boeing)
- The ULA Atlas V rocket that will launch Boeing’s DM-1 Starliner spacecraft captured at ULA’s Decatur, AL factory, October 2017. (ULA)
- The United Launch Alliance (ULA) dual engine Centaur upper stage of the Atlas V rocket in the final stages of production and checkout, May 2018. (ULA)
In other words, Boeing requested and received a full 60% more than SpaceX to – quite literally – accomplish an identical task. Alongside the storied and brutally expensive history of crewed American spaceflight, both contracts are an absolute steal for two modernized, crew-capable spacecraft, but a 60% premium is a 60% premium. Foreseeable but slight cost overruns caused, among other things, by additional contractual requirements from NASA have followed a similar trend, roughly proportional to each company’s slice of the original $6.8b Commercial Crew contract.
“As of April 2018, NASA requirement changes had increased the value of contract line item 001 for Boeing by approximately $191 million and for SpaceX by approximately $91 million.” (GAO-18-476)
Still, Boeing’s progress towards its own DM-1 and DM-2 demo flights and a pad-abort test are impressive, although it very likely is more of a demonstration of a different approach to public communications than of any actual step up on SpaceX. In the last few weeks, Boeing has released a number of photos showing off the progress made building its own Starliner capsules and service modules (trunks), three of which are currently in varied states of assembly and integration in the company’s Florida-based facility. Additionally, United Launch Alliance CEO Tory Bruno has shared off-and-on updates and photos of the launch contractor’s own progress assembling the rockets that will launch Boeing’s spacecraft.
The two engine Centaur is getting ready and excited for #StarLiner. pic.twitter.com/WIf3H8k9yq
— Tory Bruno (@torybruno) July 2, 2018
Regardless, a huge amount of work lies ahead before both Boeing and SpaceX’s crewed spacecraft are able to conduct their first uncrewed and crewed launches into orbit. Now very outdated, NASA has stated several times recently that the presently available targets of NET August 31 will likely be updated later this month, pushing DM-1 debuts into NET Q4 2018 and the first commercial crewed demo missions to 2019.
Stay tuned, as the Block 5 Falcon 9 tasked with launching SpaceX’s own DM-1 Crew Dragon will likely be the next of a recent flood of finished rockets to leave the company’s Hawthorne factory, where it will head to McGregor, Texas to complete acceptance wet dress rehearsals and static fire tests before shipping to SpaceX’s Pad 39A in Florida.
Follow us for live updates, peeks behind the scenes, and photos from Teslarati’s East and West Coast photographers.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
Elon Musk
Tesla announces closure date on widely controversial Full Self-Driving program
Tesla has said that it will officially bring closure to its free Full Self-Driving transfer program on March 31, 2026, giving owners until the end of the quarter to move their driving suite to another vehicle with no additional cost.
Tesla has officially announced a closure date for a widely controversial Full Self-Driving program, which has been among the most discussed pieces of the driving suite for years.
The move comes just after the company confirmed it would no longer offer the option to purchase the suite outright, instead opting for a subscription-based platform that will be available in mid-February.
Tesla has said that it will officially bring closure to its free Full Self-Driving transfer program on March 31, 2026, giving owners until the end of the quarter to move their driving suite to another vehicle with no additional cost.
NEWS: Tesla has started to inform customers in the U.S. that free FSD transfer will end on March 31, 2026.
Tesla has previously said free FSD transfers would end “that quarter,” but this is the first time in many quarters they’ve communicated a specific end date. Time will tell… pic.twitter.com/iCKDvGuBds
— Sawyer Merritt (@SawyerMerritt) January 18, 2026
After that date, Tesla owners who purchased the FSD suite outright will have to adopt the exclusive subscription-only program, which will be the only option available after February 14.
CEO Elon Musk announced earlier this month that Tesla would be ending the option to purchase Full Self-Driving outright, but the reasoning for this decision is unknown.
However, there has been a lot of speculation that Tesla could offer a new tiered program, which would potentially lower the price of the suite and increase the take rate.
Tesla is shifting FSD to a subscription-only model, confirms Elon Musk
Others have mentioned something like a pay-per-mile platform that would charge drivers based on usage, which seems to be advantageous for those who still love to drive their cars but enjoy using FSD for longer trips, as it can take the stress out of driving.
Moving forward, Tesla seems to be taking any strategy it can to increase the number of owners who utilize FSD, especially as it is explicitly mentioned in Musk’s new compensation package, which was approved last year.
Musk is responsible for getting at least 10 million active Full Self-Driving subscriptions in one tranche, while another would require the company to deliver 20 million vehicles cumulatively.
The current FSD take rate is somewhere around 12 percent, as the company revealed during the Q3 2025 Earnings Call. Tesla needs to bump this up considerably, and the move to rid itself of the outright purchase option seems to be a move to get things going in the right direction.
News
Tesla Model Y leads South Korea’s EV growth in 2025
Data from the Korea Automobile and Mobility Industry Association showed that the Tesla Model Y emerged as one of the segment’s single biggest growth drivers.
South Korea’s electric vehicle market saw a notable rise in 2025, with registrations rising more than 50% and EV penetration surpassing 10% for the first time.
Data from the Korea Automobile and Mobility Industry Association showed that the Tesla Model Y, which is imported from Gigafactory Shanghai, emerged as one of the segment’s single biggest growth drivers, as noted in a report from IT Home News.
As per the Korea Automobile and Mobility Industry Association’s (KAMA) 2025 Korea Domestic Electric Vehicle Market Settlement report, South Korea registered 220,177 new electric vehicles in 2025, a 50.1% year-over-year increase. EV penetration also reached 13.1% in the country, entering double digits for the first time.
The Tesla Model Y played a central role in the market’s growth. The Model Y alone sold 50,397 units during the year, capturing 26.6% of South Korea’s pure electric passenger vehicle market. Sales of the Giga Shanghai-built Model Y increased 169.2% compared with 2024, driven largely by strong demand for the all-electric crossover’s revamped version.
Manufacturer performance reflected a tightly contested market. Kia led with 60,609 EV sales, followed closely by Tesla at 59,893 units and Hyundai at 55,461 units. Together, the three brands accounted for nearly 80% of the country’s total EV sales, forming what KAMA described as a three-way competitive market.
Imported EVs gained ground in South Korea in 2025, reaching a market share of 42.8%, while the share of domestically produced EVs declined from 75% in 2022 to 57.2% last year. Sales of China-made EVs more than doubled year over year to 74,728 units, supported in no small part by Tesla and its Model Y.
Elon Musk, for his part, has praised South Korean customers and their embrace of the electric vehicler maker. In a reply on X to a user who noted that South Koreans are fond of FSD, Musk stated that, “Koreans are often a step ahead in appreciating new technology.”
News
Samsung’s Tesla AI5/AI6 chip factory to start key equipment tests in March: report
Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant.
Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant, which will produce Tesla’s next-generation AI5 chip.
Preparing for Tesla’s AI5/AI6 chips
As per a report by Sina Finance, Samsung Electronics is looking to begin trial operations of extreme ultraviolet (EUV) lithography equipment at its Taylor facility in March. These efforts are reportedly intended to support the full production of Tesla’s AI5 chips starting in the latter half of 2026.
The Taylor factory, Samsung’s first wafer fabrication plant in the United States, covers roughly 4.85 million square meters and is nearing completion. Media reports, citing contractors, have estimated that about 7,000 workers now work on the factory, about 1,000 of whom are reportedly working from the facility’s office building.
Samsung is reportedly preparing to apply for a temporary occupancy permit, which would allow production to begin before the plant is fully completed.
Tesla’s aggressive AI chip roadmap
Elon Musk recently stated that Tesla’s next-generation AI5 chip is nearly complete, while early development on its successor, AI6, is already underway. Musk shared the update in a post on X, which also happened to be a recruiting message for engineers.
As per Musk, Tesla is looking to iterate its in-house AI chips on an accelerated timeline, with future generations, including AI7, AI8, and AI9, targeting a roughly nine-month design cycle. He also stated that the rapid cadence could allow Tesla’s chips to become the highest-volume AI processors in the world.
Previous reports have indicated that Samsung Electronics would be manufacturing Tesla’s AI5 chip, alongside its rival, Taiwan Semiconductor Manufacturing Company (TSMC). The two suppliers are expected to produce different versions of Tesla’s AI5 chip, with TSMC using a 3nm process and Samsung targeting 2nm production.





