Connect with us

News

SpaceX stacks orbital Starship sections as Elon Musk teases June 20th event

SpaceX's orbital Starship prototype is starting to look much more like its renders. (NASASpaceflight - bocachicagal; SpaceX)

Published

on

SpaceX CEO Elon Musk says he will provide a public update on the development status of Starship and Super Heavy in an official presentation later this summer, possibly as soon as June 20th.

Meanwhile, SpaceX’s South Texas team have been busy at work on both Starhopper and a newer Starship, said by Musk to be the first orbit-capable prototype. In the last week, technicians have begun stacking several sections of the vehicle’s stainless steel hull, all fabricated and welded together side-by-side. On Thursday, May 9th, this progressed to the installation of the Starship’s first gently tapered nose section atop its cylindrical tank section. Likely the second- or third-to-last major stack before its aeroshell is assembled into one piece, the orbital prototype is starting to truly resemble a real Starship.

They grow up so fast…

CEO Elon Musk revealed SpaceX’s Mars colonization architecture back in September 2016 and has since provided design and development updates every 6-12 months. Between then now, Starship/Super Heavy (formerly BFR, fore-formerly ITS) has radically changed. Originally baselined with a diameter of 12 m (40 ft), an almost entirely carbon composite design, and a spaceship with bulky tripod fins/wings, SpaceX helped design, build, and test a full-scale liquid oxygen tank.

Six months after the tank was destroyed (likely intentionally) during testing, Musk announced in Sept. 2017 that ITS was now called BFR and would feature a leaner 9m (30 ft) diameter. He also revealed tentative plans to enlist BFR in a point-to-point Earth transportation scheme offering travelers access to almost anywhere on Earth in ~30 minutes. In September 2018, the design changed once more, gaining ~10m of height and three mobile tripod fins/wings/legs. Finally, just a few months after the 2018 update, Musk revealed that SpaceX was moving almost entirely away from carbon composites and would instead use stainless steel throughout BFR’s structure. BFR was also renamed to Starship/Super Heavy.

An overview of a range of proposed medium launch vehicles, including ABL Space's RS-1, Firefly's Beta, and Relativity's Terran. (Teslarati)
The change in scale and design between ITS, BFR, and BFR 2018 is significant. (Teslarati)
SpaceX’s latest stainless steel Starship is pictured here on the Moon and Mars. (SpaceX)

Episode 4: Revenge of the Steel

Given SpaceX’s breakneck pace of Starhopper and Starship development, it’s possible that Musk’s “probably June 20th” event is meant to correlate with a yet-unknown Starship or Starhopper milestone. Back in early January, Musk suggested that the first orbital Starship prototype could be “complete” as early as June. However, a few weeks later, Starhopper suffered a setback when its facade/nosecone toppled over and was irreparably destroyed.

Several months distant, it’s hard to actually say if that hardware loss has impacted SpaceX’s schedule much at all. Sans nose section, SpaceX instead conducted a number of wet dress rehearsals and successfully ignited Raptor and jumped the tethered Starhopper a few feet in early April, more or less right on schedule per a December 2018 Musk tweet.

At this point in time, it’s highly unlikely that the orbital Starship prototype will be truly complete just a month or two from now. Most notably, “completion” would require seven flight-ready Raptor engines, of which SpaceX is known to have only completed 3-4 in the last four months. Despite an apparent lack of Raptors for a June completion of the orbital prototype, it may actually be possible for SpaceX to complete (in a very rough sense) the main structure of the Starship.

Major progress has been made in the last few weeks and the orbital prototype is starting to look more and more like an actual Starship. Aside from finishing the vehicle’s propellant and header tanks and engine section/thrust structure, SpaceX still needs to install avionics, wiring, plumbing, cold-gas maneuvering thrusters, COPVs, access and umbilical ports and panels, an entire heat shield, its tripod wings/fins/legs, and more. At the same time, it’s unclear if SpaceX will attempt to send Starship to orbit on its own before the first Super Heavy booster prototype is complete, an even more massive undertaking ahead of the company.

Advertisement
On April 27th, SpaceX technicians stacked two subsections of Starship hull. (NASASpaceflight – bocachicagal)
Three sections of orbital Starship become two. (NASASpaceflight – bocachicagal, May 6th)
On May 9th, technicians joined the above two sections into one monolithic piece of Starship. (NASASpaceflight – bocachicagal)
SPACESHIP!1!! (NASASpaceflight – bocachicagal)

For now, all we can do is wait and watch SpaceX’s gloriously bizarre steel Starship prototype continue to grow, while Starhoppper prepares for untethered hops a few thousand feet to the east. Things could be worse!

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Published

on

Credit: @AdanGuajardo/X

Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater. 

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Two-seat Cybercabs make perfect sense

During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab. 

“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said. 

Advertisement

Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.

“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said. 

Tesla’s robotaxi lineup is already here

The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.

The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.

Advertisement

Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.

Continue Reading

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading