Connect with us

News

SpaceX stacks orbital Starship sections as Elon Musk teases June 20th event

SpaceX's orbital Starship prototype is starting to look much more like its renders. (NASASpaceflight - bocachicagal; SpaceX)

Published

on

SpaceX CEO Elon Musk says he will provide a public update on the development status of Starship and Super Heavy in an official presentation later this summer, possibly as soon as June 20th.

Meanwhile, SpaceX’s South Texas team have been busy at work on both Starhopper and a newer Starship, said by Musk to be the first orbit-capable prototype. In the last week, technicians have begun stacking several sections of the vehicle’s stainless steel hull, all fabricated and welded together side-by-side. On Thursday, May 9th, this progressed to the installation of the Starship’s first gently tapered nose section atop its cylindrical tank section. Likely the second- or third-to-last major stack before its aeroshell is assembled into one piece, the orbital prototype is starting to truly resemble a real Starship.

They grow up so fast…

CEO Elon Musk revealed SpaceX’s Mars colonization architecture back in September 2016 and has since provided design and development updates every 6-12 months. Between then now, Starship/Super Heavy (formerly BFR, fore-formerly ITS) has radically changed. Originally baselined with a diameter of 12 m (40 ft), an almost entirely carbon composite design, and a spaceship with bulky tripod fins/wings, SpaceX helped design, build, and test a full-scale liquid oxygen tank.

Six months after the tank was destroyed (likely intentionally) during testing, Musk announced in Sept. 2017 that ITS was now called BFR and would feature a leaner 9m (30 ft) diameter. He also revealed tentative plans to enlist BFR in a point-to-point Earth transportation scheme offering travelers access to almost anywhere on Earth in ~30 minutes. In September 2018, the design changed once more, gaining ~10m of height and three mobile tripod fins/wings/legs. Finally, just a few months after the 2018 update, Musk revealed that SpaceX was moving almost entirely away from carbon composites and would instead use stainless steel throughout BFR’s structure. BFR was also renamed to Starship/Super Heavy.

An overview of a range of proposed medium launch vehicles, including ABL Space's RS-1, Firefly's Beta, and Relativity's Terran. (Teslarati)
The change in scale and design between ITS, BFR, and BFR 2018 is significant. (Teslarati)
SpaceX’s latest stainless steel Starship is pictured here on the Moon and Mars. (SpaceX)

Episode 4: Revenge of the Steel

Given SpaceX’s breakneck pace of Starhopper and Starship development, it’s possible that Musk’s “probably June 20th” event is meant to correlate with a yet-unknown Starship or Starhopper milestone. Back in early January, Musk suggested that the first orbital Starship prototype could be “complete” as early as June. However, a few weeks later, Starhopper suffered a setback when its facade/nosecone toppled over and was irreparably destroyed.

Several months distant, it’s hard to actually say if that hardware loss has impacted SpaceX’s schedule much at all. Sans nose section, SpaceX instead conducted a number of wet dress rehearsals and successfully ignited Raptor and jumped the tethered Starhopper a few feet in early April, more or less right on schedule per a December 2018 Musk tweet.

At this point in time, it’s highly unlikely that the orbital Starship prototype will be truly complete just a month or two from now. Most notably, “completion” would require seven flight-ready Raptor engines, of which SpaceX is known to have only completed 3-4 in the last four months. Despite an apparent lack of Raptors for a June completion of the orbital prototype, it may actually be possible for SpaceX to complete (in a very rough sense) the main structure of the Starship.

Major progress has been made in the last few weeks and the orbital prototype is starting to look more and more like an actual Starship. Aside from finishing the vehicle’s propellant and header tanks and engine section/thrust structure, SpaceX still needs to install avionics, wiring, plumbing, cold-gas maneuvering thrusters, COPVs, access and umbilical ports and panels, an entire heat shield, its tripod wings/fins/legs, and more. At the same time, it’s unclear if SpaceX will attempt to send Starship to orbit on its own before the first Super Heavy booster prototype is complete, an even more massive undertaking ahead of the company.

On April 27th, SpaceX technicians stacked two subsections of Starship hull. (NASASpaceflight – bocachicagal)
Three sections of orbital Starship become two. (NASASpaceflight – bocachicagal, May 6th)
On May 9th, technicians joined the above two sections into one monolithic piece of Starship. (NASASpaceflight – bocachicagal)
SPACESHIP!1!! (NASASpaceflight – bocachicagal)

For now, all we can do is wait and watch SpaceX’s gloriously bizarre steel Starship prototype continue to grow, while Starhoppper prepares for untethered hops a few thousand feet to the east. Things could be worse!

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Published

on

Ashok Elluswamy

Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Elon and Ashok’s firsthand Robotaxi insights

Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.” 

Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.

Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”

Advertisement
-->

Towards Unsupervised operations

During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.

Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.

Continue Reading

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading