News
SpaceX’s reusable Falcon 9 fleet takes shape as rocket booster production ramps
Per a source involved in SpaceX’s cross-country rocket transport infrastructure, the company continues to beat the expectations of its closest followers, pointing towards an inflection point in the production and testing of new Falcon 9 Block 5 rocket boosters and upper stages.
Building off of a number of Falcon 9 booster, upper stage, and fairing spottings over the past six weeks, it can reasonably be concluded that SpaceX has completed, shipped, tested (i.e. static fires in Texas), and delivered (to launch sites) as many Falcon 9 rockets in six weeks as were shipped, tested, and launched in the preceding five months – perhaps even 30% more.
This extreme production ramp can be attributed almost entirely to the maturation of Falcon 9 Block 5’s design and manufacturing apparatus, owing to the fact that the rocket’s most recent (and theoretically final) upgrade necessitated significant changes to almost every major aspect of the Falcon family. Meanwhile, a considerable amount of time and effort had to be directed towards the optimization and production of the first Falcon Heavy, to some extent an entirely bespoke rocket built off of much older Falcon 9 cores and a center core design unlikely to be repeated.
- Falcon 9 B1047 spotted in Florida just a short trip away from Cape Canaveral, where it will likely launch Telsat 19V in mid-July. (Reddit /u/fatherofzeuss)
- What was likely B1049 spotted heading to McGregor, Texas for static fire testing, June 11. (TeslaMotorsClub /u/nwdiver)
- What has to be B1050 on its way to McGregor for static fire testing, July 6. (anonymous)
With Falcon Heavy completed and launched in February and the last non-Block 5 booster built, launched, and relaunched in the last three months, Falcon 9 Block 5 has for the first time been allowed to become SpaceX’s near-singular focus for manufacturing and testing, both in the Hawthorne factory, the McGregor, TX testing facility, and SpaceX’s three launch pads.
This change in focus likely means that SpaceX was finally able to rid itself of what were effectively multiple SKUs (serial versions) of its workhorse rocket, presumably allowing their supplier and manufacturing apparatus to be significantly streamlined. With low-volume production and limited manufacturing space, multiple SKUs were likely a massive challenge for the Hawthorne factory and the McGregor testing facility, where the stand used to test Falcon 9 boosters likely required significant modifications to support Block 5 static fires. Meanwhile, SpaceX’s three launch pads in Florida and California all needed their own series of upgrades to transfer from Block 4 to Block 5.
- B1047 captured testing in McGregor, Texas, April 2018. (Teslarati/Aero Photo)
- Falcon 9 B1049 spotted on stand in McGregor, TX on June 15.
Regardless, SpaceX has clearly gotten its manufacturing feet back under it and has ever-growing confidence in the nascent Block 5 iteration of Falcon 9. COO and President Gwynne Shotwell noted in a May 2018 CNBC interview that she believed the Hawthorne factory was nominally capable of producing one Merlin engine a day and two Block 5 boosters per month, and this recent burst of activity appears to heartily confirm her estimates. What remains to be seen is if what appears to be a six-week sprint (at least relative to the last year or so of rocket building) will instead prove to be the norm for the second half of 2018 and 2019.
If SpaceX can continue to sustain this extraordinarily rapid-fire pace of rocket production for just the next six months, the company could round out 2018 with a strong start to what Shotwell described would be a “sizable fleet” of Falcon boosters. Block 5 boosters B1047, B1048, and B1049 are now finished with static fire testing in McGregor after shipping from Hawthorne and either at launch sites or on their way, while B1050 most likely just arrived at McGregor for its own static fire. The first successfully launched and recovered Block 5 booster (B1046) was said by CEO Elon Musk to be undergoing a thorough teardown analysis – a process that almost certainly has been completed given the burst of Block 5 shipments and testing – and should be free to support additional launches later this year.
If SpaceX continues to produce nearly two boosters per month, the company could round out 2018 with a fleet of nearly 16 Falcon 9 boosters, each of which has been designed to support anywhere from a handful to a hundred reuses.
Follow us for live updates, peeks behind the scenes, and photos from Teslarati’s East and West Coast photographers.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
News
Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater.
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Two-seat Cybercabs make perfect sense
During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab.
“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said.
Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.
“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said.
Tesla’s robotaxi lineup is already here
The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.
The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.
Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.




