Connect with us

News

SpaceX Falcon 9 Block 5 will usher in a new era of rapid reuse rockets

Published

on

Despite all missions being readily in the range of recovery, SpaceX has only attempted to recover its Falcon boosters after two of the company’s five 2018 launches. If anything, the attachment to Falcon boosters and the apparent melancholy felt by many observers when they are not recovered is a testament to the staggeringly abrupt success of SpaceX’s reusable rocketry program.

Aside from Falcon Heavy’s center core and 1044, each booster expended in the last several months (Iridium-4, GovSat-1, and PAZ) was aging, flight-proven, and nearing the end of its operational life: Block 3 and Block 4 Falcon 9s were simply not designed or expected to fly more than two or three times total. Their seemingly premature deaths were thus a necessary step along the path to Block 5 and truly rapid and cheap booster reuse; perhaps as pragmatic as quite literally making space for new and superior hardware at SpaceX’s many facilities. The demise of Falcon Heavy’s center core nevertheless made for a spectacular video (skip to 1:10, or watch the whole thing…).

The end (of old Falcons) is nigh

Despite the carnage in recent times, the next two weeks are likely to see several more flight-proven Falcon 9s meet their timely, watery demise, or at least complete their final flight in the case of CRS-14.

  • Iridium-5 (NET March 29) will be flying atop Booster (B) 1041, previously used for Iridium-3 (Oct. 2017)
  • CRS-14 (NET April 2) will make use of B1039, a booster that debuted with the launch of CRS-12 (Aug. 2017)
  • Iridium-6/GRACE-FO (NET April 28) was confirmed just yesterday to be flying on B1043, the booster that launched the now-infamous Zuma spysat this January
  • Lastly, SES-12 (NET April 30) will likely use B1040, which orbited the USAF’s secretive X-37B spaceplane in Sept. 2017

While more than a little hard to believe, this series of launches over the next 4-6 weeks may see SpaceX’s fleet of flight-proven boosters shrink to no more than two flightworthy cores – perhaps just a single Falcon 9. The launch of NASA’s exoplanet observatory TESS – set to use the brand new Falcon 9 B1045 – will likely see one additional flight after landing at LZ-1 or OCISLY in mid-April. The final flight-proven booster known to exist in a potentially flightworthy state is B1042, famous for its moderate attempt at self-immolation and Roomba-murder (correction: the Roomba murder attempt was actually a few weeks before, during the landing of SES-11’s flight-proven booster) after the successful launch of Koreasat-5A in Oct. 2017. B1042’s future is unknown at this point, however, as the post-landing fire may have damaged the booster beyond repair.

Rounding out SpaceX’s entire fleet of boosters, at least after SES-12, are the flight-proven B1045, the first-ever Block 5 booster (B1046) – flight-proven after Bangabandhu-1, and the second Block 5 booster (B1047). Assuming that Block 5’s first hot-fire testing has gone well at SpaceX’s McGregor, TX facilities, it’s probable that B1048 and perhaps B1049 will roll out of the Hawthorne factory and head to Texas for their own tests between now and then.

Advertisement
-->

https://www.instagram.com/p/BgfboKIB17H/

TL;DR: SpaceX is betting heavily on Block 5

The purpose of this brief jaunt through the annals of SpaceX’s rocket fleet and production goals is to demonstrate just how aggressively SpaceX has bet on Block 5 – both on its success as a new and complex technological system and as an unprecedentedly reusable orbital-class rocket. If any design or manufacturing flaws are discovered in the first several Block 5 Falcon 9s, or if Block 5 turns out to be less reusable than SpaceX hopes, the company could well find its manifested launch dates slipping as flightworthy boosters – not satellites – become the bottleneck for access to orbit.

Nevertheless, SpaceX has at least six full-up Falcon 9 boosters in various stages of integration and completion at their Hawthorne factory, as well as 1046 in (or departing) Texas and 1047 presumably on its way there. SpaceX certainly has a strong track record of introducing its many upgraded iterations of Falcon 9 in the past – fingers crossed that that trend continues with Block 5. If SpaceX’s confidence still rings true a month or two from today, a new era of access to space will have truly begun, and SpaceX will be able to quite rapidly refocus a considerable portion of its workforce on getting to Mars.

Follow us for live updates, behind-the-scenes sneak peeks, and a sea of beautiful photos from our East and West coast photographers.

Teslarati   –   Instagram Twitter

Advertisement
-->

Tom CrossTwitter

Pauline Acalin  Twitter

Eric Ralph Twitter

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

Published

on

Credit: Jürgen Stegemann/LinkedIn

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading

Elon Musk

Elon Musk reveals what will make Optimus’ ridiculous production targets feasible

Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.

Published

on

Credit: Tesla Optimus/X

Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.

Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.

The highest volume product

Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.

Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.

Self-replication is key

During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.

Advertisement
-->

The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems. 

If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.

Continue Reading