Connect with us

News

SpaceX Falcon 9 Block 5 will usher in a new era of rapid reuse rockets

Published

on

Despite all missions being readily in the range of recovery, SpaceX has only attempted to recover its Falcon boosters after two of the company’s five 2018 launches. If anything, the attachment to Falcon boosters and the apparent melancholy felt by many observers when they are not recovered is a testament to the staggeringly abrupt success of SpaceX’s reusable rocketry program.

Aside from Falcon Heavy’s center core and 1044, each booster expended in the last several months (Iridium-4, GovSat-1, and PAZ) was aging, flight-proven, and nearing the end of its operational life: Block 3 and Block 4 Falcon 9s were simply not designed or expected to fly more than two or three times total. Their seemingly premature deaths were thus a necessary step along the path to Block 5 and truly rapid and cheap booster reuse; perhaps as pragmatic as quite literally making space for new and superior hardware at SpaceX’s many facilities. The demise of Falcon Heavy’s center core nevertheless made for a spectacular video (skip to 1:10, or watch the whole thing…).

The end (of old Falcons) is nigh

Despite the carnage in recent times, the next two weeks are likely to see several more flight-proven Falcon 9s meet their timely, watery demise, or at least complete their final flight in the case of CRS-14.

  • Iridium-5 (NET March 29) will be flying atop Booster (B) 1041, previously used for Iridium-3 (Oct. 2017)
  • CRS-14 (NET April 2) will make use of B1039, a booster that debuted with the launch of CRS-12 (Aug. 2017)
  • Iridium-6/GRACE-FO (NET April 28) was confirmed just yesterday to be flying on B1043, the booster that launched the now-infamous Zuma spysat this January
  • Lastly, SES-12 (NET April 30) will likely use B1040, which orbited the USAF’s secretive X-37B spaceplane in Sept. 2017

While more than a little hard to believe, this series of launches over the next 4-6 weeks may see SpaceX’s fleet of flight-proven boosters shrink to no more than two flightworthy cores – perhaps just a single Falcon 9. The launch of NASA’s exoplanet observatory TESS – set to use the brand new Falcon 9 B1045 – will likely see one additional flight after landing at LZ-1 or OCISLY in mid-April. The final flight-proven booster known to exist in a potentially flightworthy state is B1042, famous for its moderate attempt at self-immolation and Roomba-murder (correction: the Roomba murder attempt was actually a few weeks before, during the landing of SES-11’s flight-proven booster) after the successful launch of Koreasat-5A in Oct. 2017. B1042’s future is unknown at this point, however, as the post-landing fire may have damaged the booster beyond repair.

Rounding out SpaceX’s entire fleet of boosters, at least after SES-12, are the flight-proven B1045, the first-ever Block 5 booster (B1046) – flight-proven after Bangabandhu-1, and the second Block 5 booster (B1047). Assuming that Block 5’s first hot-fire testing has gone well at SpaceX’s McGregor, TX facilities, it’s probable that B1048 and perhaps B1049 will roll out of the Hawthorne factory and head to Texas for their own tests between now and then.

Advertisement
-->

https://www.instagram.com/p/BgfboKIB17H/

TL;DR: SpaceX is betting heavily on Block 5

The purpose of this brief jaunt through the annals of SpaceX’s rocket fleet and production goals is to demonstrate just how aggressively SpaceX has bet on Block 5 – both on its success as a new and complex technological system and as an unprecedentedly reusable orbital-class rocket. If any design or manufacturing flaws are discovered in the first several Block 5 Falcon 9s, or if Block 5 turns out to be less reusable than SpaceX hopes, the company could well find its manifested launch dates slipping as flightworthy boosters – not satellites – become the bottleneck for access to orbit.

Nevertheless, SpaceX has at least six full-up Falcon 9 boosters in various stages of integration and completion at their Hawthorne factory, as well as 1046 in (or departing) Texas and 1047 presumably on its way there. SpaceX certainly has a strong track record of introducing its many upgraded iterations of Falcon 9 in the past – fingers crossed that that trend continues with Block 5. If SpaceX’s confidence still rings true a month or two from today, a new era of access to space will have truly begun, and SpaceX will be able to quite rapidly refocus a considerable portion of its workforce on getting to Mars.

Follow us for live updates, behind-the-scenes sneak peeks, and a sea of beautiful photos from our East and West coast photographers.

Teslarati   –   Instagram Twitter

Advertisement
-->

Tom CrossTwitter

Pauline Acalin  Twitter

Eric Ralph Twitter

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla hints at Starlink integration with recent patent

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

Published

on

Credit: Grok

Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.

The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”

Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.

Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.

These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.

They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:

Advertisement
-->

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.

It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).

Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.

Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.

Advertisement
-->

It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.

Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.

SpaceX reaches incredible milestone with Starlink program

Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.

Advertisement
-->
Continue Reading

News

Tesla supplements Holiday Update by sneaking in new Full Self-Driving version

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Published

on

Credit: Tesla

Tesla has surprised some owners by sneaking in a new Full Self-Driving version with the wide release of the Holiday Update, which started rolling out to Hardware 4 owners on Friday night.

Tesla has issued a controlled and very slow release pattern with the Holiday Update, which rolls out with Software Version 2025.44.25.5.

For the past two weeks, as it has rolled out to Hardware 3 and older Tesla owners, the company has kept its deployment of the new Software Version relatively controlled.

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Tesla Full Self-Driving v14.2.1.25 made its first appearance last night to Hardware 4 owners who are members of the Early Access Program (EAP). It appears to be a slight refinement from FSD v14.2.1, which has been out for a couple of weeks.

Advertisement
-->

Many owners welcome the new FSD version, us included, because we’ve been less than impressed with v14.2.1. We have experienced some minor regressions with v14.2.1, especially with Speed Limit recognition, Speed Profile tinkering, and parking performance.

As it stands, Full Self-Driving is still particularly impressive, but Tesla is evidently having an issue with some of the adjustments, as it is still refining some of the performance aspects of the suite. This is expected and normal with some updates, as not all of them are an improvement in all areas; we routinely see some things backtrack every once in a while.

Advertisement
-->

This new FSD version is likely to take care of those things, but it also includes all of the awesome Holiday Update features, which include:

  • Grok with Navigation Commands (Beta) – Grok will now add and edit destinations.
  • Tesla Photobooth – Take pictures inside your car using the cabin-facing camera
  • Dog Mode Live Activity – Check on your four-legged friend on your phone through periodic snapshots taken of the cabin
  • Dashcam Viewer Update – Includes new metrics, like steering wheel angle, speed, and more
  • Santa Mode – New graphics, trees, and a lock chime
  • Light Show Update – Addition of Jingle Rush light show
  • Custom Wraps and License Plates – Colorizer now allows you to customize your vehicle even further, with custom patterns, license plates, and tint
  • Navigation Improvements – Easier layout and setup
  • Supercharger Site Map – Starting at 18 pilot locations, a 3D view of the Supercharger you’re visiting will be available
  • Automatic Carpool Lane Routing – Navigation will utilize carpool lanes if enabled
  • Phone Left Behind Chime – Your car will now tell you if you left a phone inside
  • Charge Limit Per Location – Set a charge limit for each location
  • ISS Docking Simulator –  New game
  • Additional Improvements – Turn off wireless charging pad, Spotify improvements, Rainbow Rave Cave, Lock Sound TRON addition

Tesla also added two other things that were undocumented, like Charging Passport and information on USB drive storage to help with Dashcam.

Continue Reading

Cybertruck

Tesla updates Cybertruck owners about key Powershare feature

Published

on

Credit: Tesla

Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.

Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.

Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.

However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.

Powerwall discharge would be prioritized before tapping into the truck’s larger pack.

Advertisement
-->

However, Tesla is still working on getting the feature out to owners, an email said:

“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026. 

This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”

Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.

Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.

Advertisement
-->

Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:

He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”

Advertisement
-->

It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.

Continue Reading