News
SpaceX isn’t giving up on catching rocket fairings, boat spotted with new net
SpaceX fairing recovery vessel Mr. Steven was spotted in Port of San Pedro on January 22nd performing tests with two fairings in its net, hinting at the challenging logistics of safely recovering both Falcon 9 fairing halves with one ship.
Although SpaceX engineers and technicians have yet to catch a parasailing Falcon 9 fairing (let alone two) after an actual operational launch, a series of controlled fairing drop tests – using a barge and a helicopter – have brought Mr. Steven agonizingly close to success, evidenced by an official video published by SpaceX earlier this month.
Two fairing halves, each in a separate net aboard Mr Steven this morning. #spacex pic.twitter.com/beYSFQwcYr
— Pauline Acalin (@w00ki33) January 23, 2019
Teslarati photographer Pauline Acalin managed to make it to Berth 240 in time to capture one section of SpaceX’s fairing recovery testing, in which Mr. Steven was loaded with two fairings, one on the large main net (the passive half) and one (the active half) atop a much smaller net slack on the vessel’s deck. By asymmetrically actuating each net’s separate electric motors, recovery technicians appear to be able to control fairing half orientation and shift their position in the net. It’s unclear how exactly Mr. Steven’s main (top) and secondary (bottom) nets are meant to interface insofar as it does not appear physically possible for a fairing half in the top net to make its way to the bottom net without the intervention of dockside cranes.
Perhaps more importantly, local photographer Jack Beyer was able to observe additional activities just prior to Pauline’s arrival, capturing what looked like a weighted parachute drop test onto either Mr. Steven’s net or the concrete docks beside the vessel.
So far they’ve placed one fairing half in the top net with another in the bottom, and done at least one drop test of a weight with a parachute. ? pic.twitter.com/MkWb9l9lqz
— Jack Beyer (@thejackbeyer) January 22, 2019
The goal of that parachute/weight drop test is entirely opaque. Regardless, Tuesday’s tests do seem to indicate that SpaceX is thinking about recovering both post-launch Falcon fairing halves with a single Mr. Steven, a capability upgrade that would make the incomplete challenge of catching fairings even more difficult. Assuming both fairing halves deploy their parafoils at roughly the same time, it might be possible for the autonomous parafoils to modify trajectories in such a way that a gap of seconds or even minutes could be created between both planned splashdowns, offering Mr. Steven a minute or two to free its net of the first captured half before gently catching the second.
Despite the fact that SpaceX has not yet had operational success in the ~12 months recovery engineers and technicians have been working with Mr. Steven, tests like those performed on Tuesday have continued to reliably occur. If anything, the fact that experiments with dual-fairing recovery operations are still on the table is an encouraging indication that fairing recovery and reuse – particularly with Mr. Steven in the loop – are still a priority at SpaceX, while also suggesting that the company’s engineers and technicians are extremely confident that repeatable success is just a matter of refinement.

This should not come as a much of a surprise given that Falcon 9 began propulsive soft landing attempts in September 2013, 27 months before the company’s first successful Falcon 9 booster recovery. Nevertheless, SpaceX attempted its first actual landing aboard a drone ship in January 2015, separating the first attempt from the first successful landing by just less than 12 months. Fairing recovery is clearly an entirely different beast but the gist of this analogy remains true regardless – SpaceX’s brilliant engineers and technicians are unlikely to give up until a given problem is solved or their efforts are redirected elsewhere as company priorities shift.
Recent fairing recovery test with Mr. Steven. So close! pic.twitter.com/DFSCfBnM0Y
— SpaceX (@SpaceX) January 8, 2019
Berth 240’s uncertain future
In the meantime, SpaceX may soon have to move Mr. Steven’s Port of San Pedro operations elsewhere according to a report from the LA Times that the company plans to “terminate [its] Terminal Island lease agreement.” SpaceX was unable to offer further insight beyond a statement provided about the future of BFR’s manufacturing, initially planned to occur at a dedicated factory that would have been built at Berth 240, which has also acted as Mr. Steven’s home for the last eight months.
Given the lack of official insight into the proceedings, it’s ambiguous if the terminated lease will be modified to allow for Mr. Steven to continue operating out of Berth 240. Prior to moving to Berth 240, SpaceX stationed Mr. Steven at Berth 52, home of drone ship Just Read The Instructions (JRTI) and support vessel NRC Quest. Space is already tight at that site, however, making it a suboptimal replacement for Berth 240.
While I feel crushed about #SpaceX pulling the #SuperHeavy out of the @PortofLA, I feel confident that other innovators will see the huge value they get in San Pedro. (1/2)
— Joe Buscaino (@JoeBuscaino) January 16, 2019
SpaceX signed its Berth 240 lease near the end of March 2018 and would have reached the first anniversary of its prospective BFR factory around two months from now. For now, only SpaceX seems to know where Mr. Steven’s operations and the first BFR (Starship/Super Heavy) production will ultimately be located.
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
Energy
Tesla launches Cybertruck vehicle-to-grid program in Texas
The initiative was announced by the official Tesla Energy account on social media platform X.
Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills.
The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.
Texas’ Cybertruck V2G program
In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.
During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.
The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.
Powershare Grid Support
To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.
Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.
News
Samsung nears Tesla AI chip ramp with early approval at TX factory
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung clears early operations hurdle
As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.
City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.
Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips.
Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.
Samsung’s U.S. expansion
Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.
Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.
Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.
One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips.