News
SpaceX isn’t giving up on catching rocket fairings, boat spotted with new net
SpaceX fairing recovery vessel Mr. Steven was spotted in Port of San Pedro on January 22nd performing tests with two fairings in its net, hinting at the challenging logistics of safely recovering both Falcon 9 fairing halves with one ship.
Although SpaceX engineers and technicians have yet to catch a parasailing Falcon 9 fairing (let alone two) after an actual operational launch, a series of controlled fairing drop tests – using a barge and a helicopter – have brought Mr. Steven agonizingly close to success, evidenced by an official video published by SpaceX earlier this month.
Two fairing halves, each in a separate net aboard Mr Steven this morning. #spacex pic.twitter.com/beYSFQwcYr
— Pauline Acalin (@w00ki33) January 23, 2019
Teslarati photographer Pauline Acalin managed to make it to Berth 240 in time to capture one section of SpaceX’s fairing recovery testing, in which Mr. Steven was loaded with two fairings, one on the large main net (the passive half) and one (the active half) atop a much smaller net slack on the vessel’s deck. By asymmetrically actuating each net’s separate electric motors, recovery technicians appear to be able to control fairing half orientation and shift their position in the net. It’s unclear how exactly Mr. Steven’s main (top) and secondary (bottom) nets are meant to interface insofar as it does not appear physically possible for a fairing half in the top net to make its way to the bottom net without the intervention of dockside cranes.
Perhaps more importantly, local photographer Jack Beyer was able to observe additional activities just prior to Pauline’s arrival, capturing what looked like a weighted parachute drop test onto either Mr. Steven’s net or the concrete docks beside the vessel.
So far they’ve placed one fairing half in the top net with another in the bottom, and done at least one drop test of a weight with a parachute. ? pic.twitter.com/MkWb9l9lqz
— Jack Beyer (@thejackbeyer) January 22, 2019
The goal of that parachute/weight drop test is entirely opaque. Regardless, Tuesday’s tests do seem to indicate that SpaceX is thinking about recovering both post-launch Falcon fairing halves with a single Mr. Steven, a capability upgrade that would make the incomplete challenge of catching fairings even more difficult. Assuming both fairing halves deploy their parafoils at roughly the same time, it might be possible for the autonomous parafoils to modify trajectories in such a way that a gap of seconds or even minutes could be created between both planned splashdowns, offering Mr. Steven a minute or two to free its net of the first captured half before gently catching the second.
Despite the fact that SpaceX has not yet had operational success in the ~12 months recovery engineers and technicians have been working with Mr. Steven, tests like those performed on Tuesday have continued to reliably occur. If anything, the fact that experiments with dual-fairing recovery operations are still on the table is an encouraging indication that fairing recovery and reuse – particularly with Mr. Steven in the loop – are still a priority at SpaceX, while also suggesting that the company’s engineers and technicians are extremely confident that repeatable success is just a matter of refinement.

This should not come as a much of a surprise given that Falcon 9 began propulsive soft landing attempts in September 2013, 27 months before the company’s first successful Falcon 9 booster recovery. Nevertheless, SpaceX attempted its first actual landing aboard a drone ship in January 2015, separating the first attempt from the first successful landing by just less than 12 months. Fairing recovery is clearly an entirely different beast but the gist of this analogy remains true regardless – SpaceX’s brilliant engineers and technicians are unlikely to give up until a given problem is solved or their efforts are redirected elsewhere as company priorities shift.
Recent fairing recovery test with Mr. Steven. So close! pic.twitter.com/DFSCfBnM0Y
— SpaceX (@SpaceX) January 8, 2019
Berth 240’s uncertain future
In the meantime, SpaceX may soon have to move Mr. Steven’s Port of San Pedro operations elsewhere according to a report from the LA Times that the company plans to “terminate [its] Terminal Island lease agreement.” SpaceX was unable to offer further insight beyond a statement provided about the future of BFR’s manufacturing, initially planned to occur at a dedicated factory that would have been built at Berth 240, which has also acted as Mr. Steven’s home for the last eight months.
Given the lack of official insight into the proceedings, it’s ambiguous if the terminated lease will be modified to allow for Mr. Steven to continue operating out of Berth 240. Prior to moving to Berth 240, SpaceX stationed Mr. Steven at Berth 52, home of drone ship Just Read The Instructions (JRTI) and support vessel NRC Quest. Space is already tight at that site, however, making it a suboptimal replacement for Berth 240.
While I feel crushed about #SpaceX pulling the #SuperHeavy out of the @PortofLA, I feel confident that other innovators will see the huge value they get in San Pedro. (1/2)
— Joe Buscaino (@JoeBuscaino) January 16, 2019
SpaceX signed its Berth 240 lease near the end of March 2018 and would have reached the first anniversary of its prospective BFR factory around two months from now. For now, only SpaceX seems to know where Mr. Steven’s operations and the first BFR (Starship/Super Heavy) production will ultimately be located.
News
Tesla exec pleads for federal framework of autonomy to U.S. Senate Committee
Tesla executive Lars Moravy appeared today in front of the U.S. Senate Commerce Committee to highlight the importance of modernizing autonomy standards by establishing a federal framework that would reward innovation and keep the country on pace with foreign rivals.
Moravy, who is Tesla’s Vice President of Vehicle Engineering, strongly advocated for Congress to enact a national framework for autonomous vehicle development and deployment, replacing the current patchwork of state-by-state rules.
These rules have slowed progress and kept companies fighting tooth-and-nail with local legislators to operate self-driving projects in controlled areas.
Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count
Moravy said the new federal framework was essential for the U.S. to “maintain its position in global technological development and grow its advanced manufacturing capabilities.
He also said in a warning to the committee that outdated regulations and approval processes would “inhibit the industry’s ability to innovate,” which could potentially lead to falling behind China.
Being part of the company leading the charge in terms of autonomous vehicle development in the U.S., Moravy highlighted Tesla’s prowess through the development of the Full Self-Driving platform. Tesla vehicles with FSD engaged average 5.1 million miles before a major collision, which outpaces that of the human driver average of roughly 699,000 miles.
Moravy also highlighted the widely cited NHTSA statistic that states that roughly 94 percent of crashes stem from human error, positioning autonomous vehicles as a path to dramatically reduce fatalities and injuries.
🚨 Tesla VP of Vehicle Engineering, Lars Moravy, appeared today before the U.S. Senate Commerce Committee to discuss the importance of outlining an efficient framework for autonomous vehicles:
— TESLARATI (@Teslarati) February 4, 2026
Skeptics sometimes point to cybersecurity concerns within self-driving vehicles, which was something that was highlighted during the Senate Commerce Committee hearing, but Moravy said, “No one has ever been able to take over control of our vehicles.”
This level of security is thanks to a core-embedded central layer, which is inaccessible from external connections. Additionally, Tesla utilizes a dual cryptographic signature from two separate individuals, keeping security high.
Moravy also dove into Tesla’s commitment to inclusive mobility by stating, “We are committed with our future products and Robotaxis to provide accessible transportation to everyone.” This has been a major point of optimism for AVs because it could help the disabled, physically incapable, the elderly, and the blind have consistent transportation.
Overall, Moravy’s testimony blended urgency about geopolitical competition, especially China, with concrete safety statistics and a vision of the advantages autonomy could bring for everyone, not only in the U.S., but around the world, as well.
News
Tesla Model Y lineup expansion signals an uncomfortable reality for consumers
Tesla launched a new configuration of the Model Y this week, bringing more complexity to its lineup of the vehicle and adding a new, lower entry point for those who require an All-Wheel-Drive car.
However, the broadening of the Model Y lineup in the United States could signal a somewhat uncomfortable reality for Tesla fans and car buyers, who have been vocal about their desire for a larger, full-size SUV.
Tesla has essentially moved in the opposite direction through its closure of the Model X and its continuing expansion of a vehicle that fits the bill for many, but not all.
Tesla brings closure to Model Y moniker with launch of new trim level
While CEO Elon Musk has said that there is the potential for the Model Y L, a longer wheelbase configuration of the vehicle, to enter the U.S. market late this year, it is not a guarantee.
Instead, Tesla has prioritized the need to develop vehicles and trim levels that cater to the future rollout of the Robotaxi ride-hailing service and a fully autonomous future.
But the company could be missing out on a massive opportunity, as SUVs are a widely popular body style in the U.S., especially for families, as the tighter confines of compact SUVs do not support the needs of a large family.
Although there are other companies out there that manufacture this body style, many are interested in sticking with Tesla because of the excellent self-driving platform, expansive charging infrastructure, and software performance the vehicles offer.
Additionally, the lack of variety from an aesthetic and feature standpoint has caused a bit of monotony throughout the Model Y lineup. Although Premium options are available, those three configurations only differ in terms of range and performance, at least for the most part, and the differences are not substantial.
Minor Expansions of the Model Y Fail to Address Family Needs for Space
Offering similar trim levels with slight differences to cater to each consumer’s needs is important. However, these vehicles keep a constant: cargo space and seating capacity.
Larger families need something that would compete with vehicles like the Chevrolet Tahoe, Ford Expedition, or Cadillac Escalade, and while the Model X was its largest offering, that is going away.
Tesla could fix this issue partially with the rollout of the Model Y L in the U.S., but only if it plans to continue offering various Model Y vehicles and expanding on its offerings with that car specifically. There have been hints toward a Cyber-inspired SUV in the past, but those hints do not seem to be a drastic focus of the company, given its autonomy mission.
Model Y Expansion Doesn’t Boost Performance, Value, or Space
You can throw all the different badges, powertrains, and range ratings on the same vehicle, it does not mean it’s going to sell better. The Model Y was already the best-selling vehicle in the world on several occasions. Adding more configurations seems to be milking it.
The true need of people, especially now that the Model X is going away, is going to be space. What vehicle fits the bill of a growing family, or one that has already outgrown the Model Y?
Not Expanding the Lineup with a New Vehicle Could Be a Missed Opportunity
The U.S. is the world’s largest market for three-row SUVs, yet Tesla’s focus on tweaking the existing Model Y ignores this. This could potentially result in the Osborne Effect, as sales of current models without capturing new customers who need more seating and versatility.
Expansions of the current Model Y offerings risk adding production complexity without addressing core demands, and given that the Model Y L is already being produced in China, it seems like it would be a reasonable decision to build a similar line in Texas.
Listening to consumers means introducing either the Model Y L here, or bringing a new, modern design to the lineup in the form of a full-size SUV.
Elon Musk
Elon Musk reiterates Tesla Optimus’ most sci-fi potential yet
Musk shared his comments in a series of posts on social media platform X.
Elon Musk recently reiterated one of the most ambitious forecasts for Tesla’s humanoid robot, Optimus, stating it could become the first real-world example of a Von Neumann machine. He also noted once more that Optimus would be Tesla’s biggest product.
Musk shared his comments in a series of posts on social media platform X.
Optimus as a von Neumann machine
In response to a post on X that pondered on sci-fi timelines becoming real, Musk wrote that “Optimus will be the first Von Neumann machine, capable of building civilization by itself on any viable planet.” In a separate post, Musk wrote that Optimus will be Tesla’s “biggest product ever,” a phrase he has used in the past to describe the humanoid robot’s importance to the electric vehicle maker.
A Von Neumann machine is a class of theoretical self-replicating systems originally proposed in the mid-20th century by the mathematician John von Neumann. In his concept, von Neumann described machines that could travel to other worlds, use local materials to create copies of themselves, and carry out large-scale tasks without outside intervention.
Elon Musk’s broader plans
Considering Musk’s comments, it appears that Optimus would eventually be capable of performing complex work autonomously in environments beyond Earth. If Optimus could achieve such a feat, it could very well unlock humanity’s capability to explore locations beyond Earth. The idea of space exploration becomes more than feasible.
Elon Musk has discussed space-based AI compute, large-scale robotic production, and the role of SpaceX’s Starship in transporting hardware and materials to other planets. While Musk did not detail how Optimus would fit with SpaceX’s exploration activities, his Von Neumann machine comments suggest he is looking at Tesla’s robotics as part of a potential interplanetary ecosystem.