News
SpaceX isn’t giving up on catching rocket fairings, boat spotted with new net
SpaceX fairing recovery vessel Mr. Steven was spotted in Port of San Pedro on January 22nd performing tests with two fairings in its net, hinting at the challenging logistics of safely recovering both Falcon 9 fairing halves with one ship.
Although SpaceX engineers and technicians have yet to catch a parasailing Falcon 9 fairing (let alone two) after an actual operational launch, a series of controlled fairing drop tests – using a barge and a helicopter – have brought Mr. Steven agonizingly close to success, evidenced by an official video published by SpaceX earlier this month.
Two fairing halves, each in a separate net aboard Mr Steven this morning. #spacex pic.twitter.com/beYSFQwcYr
— Pauline Acalin (@w00ki33) January 23, 2019
Teslarati photographer Pauline Acalin managed to make it to Berth 240 in time to capture one section of SpaceX’s fairing recovery testing, in which Mr. Steven was loaded with two fairings, one on the large main net (the passive half) and one (the active half) atop a much smaller net slack on the vessel’s deck. By asymmetrically actuating each net’s separate electric motors, recovery technicians appear to be able to control fairing half orientation and shift their position in the net. It’s unclear how exactly Mr. Steven’s main (top) and secondary (bottom) nets are meant to interface insofar as it does not appear physically possible for a fairing half in the top net to make its way to the bottom net without the intervention of dockside cranes.
Perhaps more importantly, local photographer Jack Beyer was able to observe additional activities just prior to Pauline’s arrival, capturing what looked like a weighted parachute drop test onto either Mr. Steven’s net or the concrete docks beside the vessel.
So far they’ve placed one fairing half in the top net with another in the bottom, and done at least one drop test of a weight with a parachute. ? pic.twitter.com/MkWb9l9lqz
— Jack Beyer (@thejackbeyer) January 22, 2019
The goal of that parachute/weight drop test is entirely opaque. Regardless, Tuesday’s tests do seem to indicate that SpaceX is thinking about recovering both post-launch Falcon fairing halves with a single Mr. Steven, a capability upgrade that would make the incomplete challenge of catching fairings even more difficult. Assuming both fairing halves deploy their parafoils at roughly the same time, it might be possible for the autonomous parafoils to modify trajectories in such a way that a gap of seconds or even minutes could be created between both planned splashdowns, offering Mr. Steven a minute or two to free its net of the first captured half before gently catching the second.
Despite the fact that SpaceX has not yet had operational success in the ~12 months recovery engineers and technicians have been working with Mr. Steven, tests like those performed on Tuesday have continued to reliably occur. If anything, the fact that experiments with dual-fairing recovery operations are still on the table is an encouraging indication that fairing recovery and reuse – particularly with Mr. Steven in the loop – are still a priority at SpaceX, while also suggesting that the company’s engineers and technicians are extremely confident that repeatable success is just a matter of refinement.

This should not come as a much of a surprise given that Falcon 9 began propulsive soft landing attempts in September 2013, 27 months before the company’s first successful Falcon 9 booster recovery. Nevertheless, SpaceX attempted its first actual landing aboard a drone ship in January 2015, separating the first attempt from the first successful landing by just less than 12 months. Fairing recovery is clearly an entirely different beast but the gist of this analogy remains true regardless – SpaceX’s brilliant engineers and technicians are unlikely to give up until a given problem is solved or their efforts are redirected elsewhere as company priorities shift.
Recent fairing recovery test with Mr. Steven. So close! pic.twitter.com/DFSCfBnM0Y
— SpaceX (@SpaceX) January 8, 2019
Berth 240’s uncertain future
In the meantime, SpaceX may soon have to move Mr. Steven’s Port of San Pedro operations elsewhere according to a report from the LA Times that the company plans to “terminate [its] Terminal Island lease agreement.” SpaceX was unable to offer further insight beyond a statement provided about the future of BFR’s manufacturing, initially planned to occur at a dedicated factory that would have been built at Berth 240, which has also acted as Mr. Steven’s home for the last eight months.
Given the lack of official insight into the proceedings, it’s ambiguous if the terminated lease will be modified to allow for Mr. Steven to continue operating out of Berth 240. Prior to moving to Berth 240, SpaceX stationed Mr. Steven at Berth 52, home of drone ship Just Read The Instructions (JRTI) and support vessel NRC Quest. Space is already tight at that site, however, making it a suboptimal replacement for Berth 240.
While I feel crushed about #SpaceX pulling the #SuperHeavy out of the @PortofLA, I feel confident that other innovators will see the huge value they get in San Pedro. (1/2)
— Joe Buscaino (@JoeBuscaino) January 16, 2019
SpaceX signed its Berth 240 lease near the end of March 2018 and would have reached the first anniversary of its prospective BFR factory around two months from now. For now, only SpaceX seems to know where Mr. Steven’s operations and the first BFR (Starship/Super Heavy) production will ultimately be located.
News
Elon Musk says he’s open to powering Apple’s Siri with xAI’s Grok
Siri, one of the first intelligent AI assistants in the market, has become widely outdated and outperformed by rivals over the years.
Elon Musk says he’s willing to help Apple overhaul Siri by integrating xAI’s Grok 4.1, igniting widespread excitement and speculations about a potential collaboration between the two tech giants.
Siri, one of the first intelligent AI assistants in the market, has become widely outdated and outperformed by rivals over the years.
Musk open to an Apple collaboration
Musk’s willingness to team up with Apple surfaced after an X user suggested replacing Siri with Grok 4.1 to modernize the AI assistant. The original post criticized Siri’s limitations and urged Apple to adopt a more advanced AI system. “It’s time for Apple to team up with xAI and actually fix Siri. Replace that outdated, painfully dumb assistant with Grok 4.1. Siri deserves to be Superintelligent,” the X user wrote.
Musk quoted the post, responding with, “I’m down.” Musk’s comment quickly attracted a lot of attention among X’s users, many of whom noted that a Grok update to Siri would be appreciated because Apple’s AI assistant has legitimately become terrible in recent years. Others also noted that Grok, together with Apple’s potential integration of Starlink connectivity, would make iPhones even more compelling.
Grok promises major Siri upgrades
The enthusiasm stems largely from Grok 4.1’s technical strengths, which include stronger reasoning and improved creative output. xAI also designed the model to reduce hallucinations, as noted in a Reality Tea report. Supporters believe these improvements could address Apple’s reported challenges developing its own advanced AI systems, giving Siri the upgrade many users have waited years for.
Reactions ranged from humorous to hopeful, with some users joking that Siri would finally “wake up with a personality” if paired with Grok. Siri, after all, was a trailblazer in voice assistants, but it is currently dominated by rivals in terms of features and capabilities. Grok could change that, provided that Apple is willing to collaborate with Elon Musk’s xAI.
News
Tesla’s top-rated Supercharger Network becomes Stellantis’ new key EV asset
The rollout begins in North America early next year before expanding to Japan and South Korea in 2027.
Stellantis will adopt Tesla’s North American Charging System (NACS) across select battery-electric vehicles starting in 2026, giving customers access to more than 28,000 Tesla Superchargers across five countries.
The rollout begins in North America early next year before expanding to Japan and South Korea in 2027, significantly boosting public fast-charging access for Jeep, Dodge, and other Stellantis brands. The move marks one of Stellantis’ largest infrastructure expansions to date.
Stellantis unlocks NACS access
Beginning in early 2026, Stellantis BEVs, including models like the Jeep Wagoneer S and Dodge Charger Daytona, will gain access to Tesla’s Supercharger network across North America. The integration will extend to Japan and South Korea in 2027, with the 2026 Jeep Recon and additional next-generation BEVs joining the list as compatibility expands. Stellantis stated that details on adapters and network onboarding for current models will be released closer to launch, as noted in a press release.
The company emphasizes that adopting NACS aligns with a broader strategy to give customers greater freedom of choice when charging, especially as infrastructure availability becomes a deciding factor for EV buyers. With access to thousands of high-speed stations, Stellantis aims to reduce range anxiety and improve long-distance travel convenience across its global portfolio.
Tesla Supercharger network proves its value
Stellantis’ move also comes as Tesla’s Supercharger system continues to earn top rankings for reliability and user experience. In the 2025 Zapmap survey, drawn from nearly 4,000 BEV drivers across the UK, Tesla Superchargers were named the Best Large EV Charging Network for the second year in a row. The study measured reliability, ease of use, and payment experience across the country’s public charging landscape.
Tesla’s UK network now includes 1,115 open Supercharger devices at 97 public locations, representing roughly 54% of its total footprint and marking a 40% increase in public availability since late 2024. Zapmap highlighted the Supercharger network’s consistently lower pricing compared to other rapid and ultra-rapid providers, alongside its strong uptime and streamlined user experience. These performance metrics further reinforce the value of Stellantis’ decision to integrate NACS across major markets.
News
Tesla FSD and Robotaxis are making people aware how bad human drivers are
These observations really show that Tesla’s focus on autonomy would result in safer roads for everyone.
Tesla FSD and the Robotaxi network are becoming so good in their self-driving performance, they are starting to highlight just how bad humans really are at driving.
This could be seen in several observations from the electric vehicle community.
Robotaxis are better than Uber, actually
Tesla’s Robotaxi service is only available in Austin and the Bay Area for now, but those who have used the service have generally been appreciative of its capabilities and performance. Some Robotaxi customers have observed that the service is simply so much more affordable than Uber, and its driving is actually really good.
One veteran Tesla owner, @BLKMDL3, recently noted that the Robotaxi service has become better than Uber simply because FSD now drives better than some human drivers. Apart from the fact that Robotaxis allow riders to easily sync their phones to the rear display, the vehicles generally provide a significantly more comfortable ride than their manually-driven counterparts from Uber.
FSD is changing the narrative, one ride at a time
It appears that FSD V14 really is something special. The update has received wide acclaim from users since it was released, and the positive reactions are still coming. This was highlighted in a recent post from Tesla owner Travis Nicolette, who shared a recent experience with FSD. As per the Tesla owner, he was quite surprised as his car was able to accomplish a U-turn in a way that exceeded human drivers.
Yet another example of FSD’s smooth and safe driving was showcased in a recent video, which showed a safety monitor of a Bay Area Robotaxi falling asleep in the driver’s seat. In any other car, a driver falling asleep at the wheel could easily result in a grave accident, but thanks to FSD, both the safety monitor and the passengers remained safe.
These observations, if any, really show that Tesla’s focus on autonomy would result in safer roads for everyone. As per the IIHS, there were 40,901 deaths from motor vehicle crashes in the United States in 2023. The NHTSA also estimated that in 2017, 91,000 police-reported crashes involved drowsy drivers. These crashes led to an estimated 50,000 people injured and 800 deaths. FSD could lower all these tragic statistics by a notable margin.