News
SpaceX’s Mr Steven spotted in high-speed test at sea with upgraded net
SpaceX’s newly-outfitted recovery vessel Mr Steven was recently captured conducting aggressive maneuvers off the coast of Port of Los Angeles, just days after the vessel’s massive new arms and net were installed for the first time. The intense pace of upgrades and acceptance testing confirm beyond any reasonable doubt that SpaceX does not intend to waste its next Falcon 9 fairing recovery attempt, set to accompany the July 25th launch of Iridium-7.
The iconic fairing recovery vessel has – for the past three or four weeks – been undergoing major upgrades to its arms or claws, as well as a massive, new net spanning nearly 0.9 acres (3700 m²). With what appears to be a genuine fourfold increase in usable area for fairing recoveries, SpaceX likely has a very strong chance of actually pulling off its first successful catches and reuses of Falcon 9 payload farings, valued at roughly 5% of the rocket’s cost ($3 million per a $60 million base price) per half. Manufacturing cost and price to the customer are difficult to compare, but it at least offers a hint of the full cost of each ~800 kg segment of carbon fiber and aluminum honeycomb.

Mr Steven seen just after a day spent conducting sea-trials a few miles offshore, July 14. (Pauline Acalin)
Based on photos and video captured between July 12 and 15, Mr Steven’s crew and recovery technicians appeared to waste no time at all leaping from arm and net installation to sea-trials of the new hardware at least as extreme as anything previously observed from the SpaceX-leased vessel. Less than half an hour after leaving the harbor for the first time since his massive new arms arrived, Marinetraffic tracking data showed that Mr Steven was already performing aggressive turns and sprints at speeds up to 20 knots (~25 mph), fairly impressive given the vessel’s 200 foot (62 meter) length and gross weight of nearly 200,000 pounds (82,000 kg).
While this may seem impressive, Mr Steven is a class of ship known as a Fast Supply Vessel (FSV) designed to routinely transport a full 400 metric tons of cargo on its deck at cruising speeds of 23 knots (27 mph), which means that the only thing Mr Steven’s wildly expansive arms likely challenge is the vessel’s center of gravity (balance), hence the follow-up tests with hard turns at high speed.
Also of interest, an extraordinary video of some of that testing – unofficially captured, somehow, by drone – showed the ship aggressively maneuvering in reverse, an ability that could come in useful during recovery attempts if the expanded net’s coincidental protection of Mr Steven’s cockpit means that it can become a less fixed element, actively seeking out falling fairings to help close the gap on each parasailing half’s 50 meter error margin.
- Mr Steven makes some serious waves, using his pod thrusters to strafe backwards at 5-10 knots. (anonymous)
- It’s subtle, but a small plus sign appears to ‘mark the spot’ on Mr Steven’s new net, stretching roughly 60×60 meters. (anonymous)
- Mr Steven shows off the fancy new rigging of that upgraded net. (Pauline Acalin)
Another opportunity fast approaches
Previously scheduled for July 20, Iridium’s NEXT 7 multi-satellite launch was pushed back a handful of days to July 25 to give SpaceX engineers and technicians additional time to prepare what is the company’s third Block 5 Falcon 9 to roll off its Hawthorne, CA assembly line. While suboptimal for the customer and for SpaceX’s manifest, that slight delay very likely padded slim schedule margins for Mr Steven’s major arm upgrades, meaning that the vessel will now be able to participate in the imminent launch’s recovery operations. After the first flightworthy vehicle’s debut in May 2018, SpaceX’s rocket production has ramped up in quite an extreme fashion, jumping from four first stages produced in six months to another three or four boosters completed and tested in Texas in just two months.
While the transportation of Falcon fairings and upper stages is far harder to keep track of, production of those critical components of the rocket have also reached throughput levels that are new territory for SpaceX, including an impressive statistic of an average of one full Merlin 1D rocket engine manufactured daily according to an individual with experience on the factory floor.
The Block 5 iteration of the workhorse SpaceX vehicle is in many ways a wholly new rocket, featuring an array of upgrades that include new heat shielding at the rocket’s base, interstage, and legs; retractable landing legs, upgraded Merlin 1D engines, and a clean-sweep refresh of the vehicle’s avionics, to name just a handful of the major changes included.

SpaceX technicians wrench on a trio of varied Merlin 1Ds in McGregor, Texas, where every single engine is test-fired before being attached to a Falcon 9. (SpaceX)
Follow us for live updates, peeks behind the scenes, and photos from Teslarati’s East and West Coast photographers.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.


