Connect with us

News

SpaceX’s next Falcon Heavy launch and landing could be more than a year away

Falcon Heavy launched for the third time ever on June 25th, successfully recovering 2 of 3 boosters and placing 24 satellites in their proper orbits. Falcon Heavy Flight 4 could be more than 16 months away. (SpaceX)

Published

on

According to comments made by US Air Force officials prior to SpaceX’s latest Falcon Heavy launch, the payload assigned to the military’s first fully-certified Falcon Heavy has been swapped with another, although the mission’s late-2020 launch target remains relatively unchanged.

This new information comes on the heels of the June 25th launch of Space Test Program 2 (STP-2), SpaceX’s third successful Falcon Heavy mission and a huge milestone for the rocket’s future as a competitive option for US military launches. Perhaps most importantly, it confirms – barring a surprise launch contract or internal Starlink mission – that Falcon Heavy’s next (and fourth) launch is unlikely to occur until late next year, a gap of at least 15-17 months.

Announced roughly four months after Falcon Heavy’s inaugural February 2018 launch debut, the USAF contracted with SpaceX to launch the ~6350 kg (14,000 lb) AFSPC-52 satellite no earlier than (NET) September 2020. In February 2019, Department of Defense contract announcements revealed that SpaceX had been awarded three military launch contracts, two for the National Reconnaissance Office (NROL-85 & NROL-87) and one for the USAF (AFSPC-44), all tentatively scheduled to launch in 2021.

First reported by Spaceflight Now, Col. Robert Bongiovi – director of the launch enterprise systems directorate at the Air Force’s Space and Missile Systems Center (AFSMC) – recently indicated that AFSPC-44 – not AFSPC-52 – is now scheduled to be the US military’s first post-certification Falcon Heavy launch. 52 and 44 have essentially swapped spots, with AFSPC-44 moving forward to NET Q4 (fall) 2020 while AFSPC-52 has been delayed to NET Q2 (spring) 2021.

Falcon Heavy lifts off from Pad 39A for the third time ever. (Tom Cross)

The trouble with launch gaps

Although Bongiovi did not explicitly state that AFSPC-44 will be SpaceX’s next Falcon Heavy launch, there are no publicly-disclosed missions set to launch on the rocket in the interim. That could theoretically change, especially if SpaceX has plans to launch the massive rocket in support of an internal Starlink mission or even something more exotic, but the loss of both Block 5 center core B1055 and B1057 means that the company will have to build an entirely new center core.

SpaceX’s Falcon Heavy lead times are far superior to competitor ULA’s Delta IV Heavy production line, but the process of manufacturing new center cores is still quite lengthy. Critically, Falcon Heavy Block 5 center cores require strengthened octawebs, custom interstages, and propellant tanks that are significantly thicker than those used on Falcon 9. For all intents and purposes, a center core is a totally different rocket relative to a Falcon 9 booster, the latter being SpaceX’s primary focus at the company’s assembly line-style Hawthorne factory. It’s theoretically possible for a dedicated Falcon Heavy center core build to be expedited or leapfrogged forward in the production queue, but most long-lead Falcon 9 booster hardware physically cannot be redirected to speed up center core production.

An overview of SpaceX’s Hawthorne factory floor in early 2018. (SpaceX)

Unless SpaceX was already in the process of building a new center core prior B1057’s unsuccessful landing attempt, it’s safe to assume that the next custom Falcon Heavy booster is unlikely to be completed until early 2020, if not later. In theory, this means that Falcon Heavy could be dormant for no less than 16 months between STP-2 and its next launch. Traditionally, that sort of lengthy gap between launches has been frowned upon by NASA, ULA, and oversight groups like GAO. If a given rocket doesn’t launch for a year or more, it can potentially pose a risk to reliability and raise costs as its production and launch teams have no satisfactory way to fully preserve their technical expertise.

This can be compared to attempting to become an expert at a musical instrument while only having access to said instrument one or two months a year, essentially impossible. In fact, at one point, NASA hoped to require its Space Launch System (SLS) rocket be able to launch no less than once per year, partly motivated by a desire to mitigate some of the deterioration that can follow extremely low launch cadences. Years later, financial constraints and years upon years of delays and budget overruns have made such a cadence effectively impossible for SLS/Orion, but the fact remains that launching a rocket just once every 18-24 months is likely to inflate both costs and risks.

The first Block 5 version of Falcon Heavy prepares for its launch debut.
Falcon Heavy Flight 2, April 2019. (SpaceX)
Falcon Heavy Flight 3, June 2019. Both side boosters (left and right) are flight-proven and launch as part of Flight 2 just ~75 days prior. (SpaceX)

Thankfully, SpaceX’s Falcon Heavy could scarcely be more different than NASA’s SLS and the retired Space Shuttle it derives most of its hardware from. Even if all things are held equal and not flying a Falcon Heavy center core for 16+ months increases risk and cost, center cores are still heavily derived from Falcon 9 booster technology, including plumbing, avionics, attitude control thrusters, Merlin 1D engines, landing legs, and launch facilities.

Furthermore, the center core is just one of five distinct assemblies that make up a given Falcon Heavy. Both side boosters are effectively Falcon 9 Block 5 boosters with nose cones instead of interstages and slight modifications to support booster attachment hardware, while the upper stage and payload fairing are the same for all Falcon launches. In other words, SpaceX’s workforce will continue to build, launch, land, and reuse dozens of Falcon 9 boosters – as well as upper stages payload fairings – between now and Falcon Heavy Flight 4, even if it’s NET Q4 2020. In a worst-case scenario, SpaceX production and launch staff will be unfamiliar and inexperienced with maybe 20% of Falcon Heavy – at least in a very rough sense. Even then, much of that unfamiliarity may still be tempered by the fact that Falcon Heavy center cores share a large amount of commonality with the Falcon 9 first stages SpaceX’s workforce will remain deeply familiar with.

Indeed, Falcon Heavy’s second launch has already demonstrated this to some extent, occurring without issue more than 14 months after the rocket’s inaugural launch. It seems that the only real loss incurred by a ~16-month delay between Flights 3 and 4 will be having to wait another year (or more) to witness Falcon Heavy’s next launch.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla CEO Elon Musk reveals new details about Robotaxi rollout

The first Tesla Robotaxi unit was spotted in Austin earlier today, and CEO Elon Musk is revealing some cool new details.

Published

on

Tesla CEO Elon Musk has revealed new details about the company’s relatively imminent rollout of the Robotaxi platform as the suspected launch date of June 12 continues to near.

Earlier today, the first video showing the first driverless Tesla Robotaxi in Austin was shared on X, just a day after the City officially listed the company as an autonomous vehicle operator on its website. Tesla is listed as a company in the “Testing” phase.

The initial details of the Robotaxi are being revealed by Musk, who is carefully releasing small tidbits that seem to show the capabilities of the entire Tesla fleet, and not necessarily just the vehicles that will be involved in the initial rollout in Austin.

First Tesla driverless robotaxi spotted in the wild in Austin, TX

His first tidbit is one that many Tesla owners and fans will already know: many Teslas are capable of this driveless performance, but Full Self-Driving is not yet refined to the point where the software is quite ready to handle it. Current versions are robust, but not prepared for driverless navigation. The hardware, however, will enable Teslas to be Robotaxis, even if they’re already purchased by owners:

This is one of the biggest advantages Tesla has over other vehicle makers. Simply put, the Over-the-Air software updates that will roll out to FSD users will eventually make their cars into Robotaxis as well.

However, Musk shed some details on the version of FSD that is being run in these new Robotaxis that were spotted. Musk said that the version these Robotaxis are running is a new version, but will soon “merge to main branch.”

There is also an even newer version that has four times the parameters as this newer version that the test-stage Robotaxis are using, but Musk admits that this needs significant refinement before it is released to the public.

As of now, Tesla is simply teasing the actual launch date of the Robotaxi program, but Bloomberg reported earlier this month that it will occur on June 12.

Continue Reading

News

First Tesla driverless robotaxi spotted in the wild in Austin, TX

The short clip suggests that Tesla may be ramping up its preparations for its robotaxi rollout in Austin.

Published

on

Credit: @TerrapinTerpene/X

A recent video posted on X has provided a first look at Tesla’s driverless robotaxi, which is expected to be deployed in Austin, Texas, this month. The vehicle was a new Tesla Model Y, which was followed by what appeared to be a manned chase car.

The short clip suggests that Tesla may be ramping up its preparations for its robotaxi rollout in Austin.

The First Robotaxi Sighting

It was evident from the short clip that the Tesla robotaxi was operating completely driverless. In the video, which was posted on X by @TerrapinTerpene, the driverless Tesla could be seen confidently making a turn. The vehicle looked and behaved like any other car on the road, save for the fact that there was no one in the driver’s seat.

Interestingly enough, the short video also provided a teaser on where Tesla will place its “robotaxi” logo on its self-driving cars. Based on the video, the robotaxis’ logo will be tastefully placed on the front doors, making the vehicles look sleek and clean.

Initial Rollout Imminent

Recent reports have suggested that Tesla is already starting the testing phase of its robotaxi service in Austin, Texas. Expectations are also high that Tesla’s initial fleet of self-driving vehicles will be utilizing a lot of teleoperation to ensure that they operate as safely as possible.

Advertisement

Updates to Austin’s official website recently have hinted at Tesla’s robotaxi launch. Just this Monday, Tesla was listed as an autonomous vehicle (AV) operator on Austin’s official Department of Motor Vehicles (DMV). Other AV operators listed on the site are Waymo and Zoox, among others.

Elon Musk, for his part, has noted that by the end of June, the public in Austin should be ready to take rides in Tesla robotaxis without an invitation. He also noted in late May that Tesla has been busy testing driverless cars on Austin’s city streets without any incidents.

Continue Reading

News

Tesla Model Y proudly takes its place as China’s best-selling SUV in May

The Model Y edged out competitors like the BYD Song Plus.

Published

on

Credit: Tesla China

The Tesla Model Y claimed its position as China’s best-selling SUV in May, with 24,770 units registered, according to insurance data from China EV DataTracker

The Model Y edged out competitors like the BYD Song Plus, which recorded 24,240 registrations, as well as Geely’s gasoline-powered Xingyue L, which took third place with 21,014 units registered, as noted in Car News China report.

Return To The Top

The Model Y’s return to the top of China’s SUV market follows a second-place finish in April, when it trailed the BYD Song Plus by just 684 units. Tesla China had 19,984 new Model Y registrations in April, while BYD had 20,668 registrations for the Song Plus. 

https://twitter.com/daltybrewer/status/1932171519817621536

For the first five months of 2025, Tesla sold 126,643 Model Ys in China, outpacing the Song Plus at 110,551 units and BYD’s Song Pro at 80,245 units. This is quite impressive as the new Tesla Model Y is still a premium vehicle that is significantly more expensive than a good number of its competitors.

Year-Over-Year Challenges

Despite its SUV crown, Tesla’s year-over-year performance in China is still seeing headwinds. May sales totaled 38,588 units, a 30% year-over-year decline. From January to May, Tesla delivered 201,926 vehicles in China, a 7.8% drop year-over-year. These drops, however, are notably affected by the company’s changeover to the new Model Y in the first quarter.

Advertisement
https://twitter.com/Tesla/status/1932171187700084910

Exports from Tesla’s Shanghai Gigafactory also fell, with 90,949 vehicles being shipped from January to May 2025. This represents a decline of 33.4% year-over-year, though May exports rose 33% to 23,074 units.

China’s electric vehicle market, meanwhile, showed robust growth. Total NEV sales, which includes battery electric vehicles (BEVs) and plug-in hybrids (PHEVs), reached 1,021,000 units in May, up 28% year-over-year. BEV sales alone hit 607,000 units, a 22.4% increase.

Considering the fact that China’s BEV market is extremely competitive, the Tesla Model Y’s rise to the top of the country’s SUV rankings is extremely impressive.

Continue Reading

Trending