News
SpaceX’s next Falcon Heavy launch and landing could be more than a year away
According to comments made by US Air Force officials prior to SpaceX’s latest Falcon Heavy launch, the payload assigned to the military’s first fully-certified Falcon Heavy has been swapped with another, although the mission’s late-2020 launch target remains relatively unchanged.
This new information comes on the heels of the June 25th launch of Space Test Program 2 (STP-2), SpaceX’s third successful Falcon Heavy mission and a huge milestone for the rocket’s future as a competitive option for US military launches. Perhaps most importantly, it confirms – barring a surprise launch contract or internal Starlink mission – that Falcon Heavy’s next (and fourth) launch is unlikely to occur until late next year, a gap of at least 15-17 months.
Announced roughly four months after Falcon Heavy’s inaugural February 2018 launch debut, the USAF contracted with SpaceX to launch the ~6350 kg (14,000 lb) AFSPC-52 satellite no earlier than (NET) September 2020. In February 2019, Department of Defense contract announcements revealed that SpaceX had been awarded three military launch contracts, two for the National Reconnaissance Office (NROL-85 & NROL-87) and one for the USAF (AFSPC-44), all tentatively scheduled to launch in 2021.
First reported by Spaceflight Now, Col. Robert Bongiovi – director of the launch enterprise systems directorate at the Air Force’s Space and Missile Systems Center (AFSMC) – recently indicated that AFSPC-44 – not AFSPC-52 – is now scheduled to be the US military’s first post-certification Falcon Heavy launch. 52 and 44 have essentially swapped spots, with AFSPC-44 moving forward to NET Q4 (fall) 2020 while AFSPC-52 has been delayed to NET Q2 (spring) 2021.

The trouble with launch gaps
Although Bongiovi did not explicitly state that AFSPC-44 will be SpaceX’s next Falcon Heavy launch, there are no publicly-disclosed missions set to launch on the rocket in the interim. That could theoretically change, especially if SpaceX has plans to launch the massive rocket in support of an internal Starlink mission or even something more exotic, but the loss of both Block 5 center core B1055 and B1057 means that the company will have to build an entirely new center core.
SpaceX’s Falcon Heavy lead times are far superior to competitor ULA’s Delta IV Heavy production line, but the process of manufacturing new center cores is still quite lengthy. Critically, Falcon Heavy Block 5 center cores require strengthened octawebs, custom interstages, and propellant tanks that are significantly thicker than those used on Falcon 9. For all intents and purposes, a center core is a totally different rocket relative to a Falcon 9 booster, the latter being SpaceX’s primary focus at the company’s assembly line-style Hawthorne factory. It’s theoretically possible for a dedicated Falcon Heavy center core build to be expedited or leapfrogged forward in the production queue, but most long-lead Falcon 9 booster hardware physically cannot be redirected to speed up center core production.

Unless SpaceX was already in the process of building a new center core prior B1057’s unsuccessful landing attempt, it’s safe to assume that the next custom Falcon Heavy booster is unlikely to be completed until early 2020, if not later. In theory, this means that Falcon Heavy could be dormant for no less than 16 months between STP-2 and its next launch. Traditionally, that sort of lengthy gap between launches has been frowned upon by NASA, ULA, and oversight groups like GAO. If a given rocket doesn’t launch for a year or more, it can potentially pose a risk to reliability and raise costs as its production and launch teams have no satisfactory way to fully preserve their technical expertise.
This can be compared to attempting to become an expert at a musical instrument while only having access to said instrument one or two months a year, essentially impossible. In fact, at one point, NASA hoped to require its Space Launch System (SLS) rocket be able to launch no less than once per year, partly motivated by a desire to mitigate some of the deterioration that can follow extremely low launch cadences. Years later, financial constraints and years upon years of delays and budget overruns have made such a cadence effectively impossible for SLS/Orion, but the fact remains that launching a rocket just once every 18-24 months is likely to inflate both costs and risks.


Thankfully, SpaceX’s Falcon Heavy could scarcely be more different than NASA’s SLS and the retired Space Shuttle it derives most of its hardware from. Even if all things are held equal and not flying a Falcon Heavy center core for 16+ months increases risk and cost, center cores are still heavily derived from Falcon 9 booster technology, including plumbing, avionics, attitude control thrusters, Merlin 1D engines, landing legs, and launch facilities.
Furthermore, the center core is just one of five distinct assemblies that make up a given Falcon Heavy. Both side boosters are effectively Falcon 9 Block 5 boosters with nose cones instead of interstages and slight modifications to support booster attachment hardware, while the upper stage and payload fairing are the same for all Falcon launches. In other words, SpaceX’s workforce will continue to build, launch, land, and reuse dozens of Falcon 9 boosters – as well as upper stages payload fairings – between now and Falcon Heavy Flight 4, even if it’s NET Q4 2020. In a worst-case scenario, SpaceX production and launch staff will be unfamiliar and inexperienced with maybe 20% of Falcon Heavy – at least in a very rough sense. Even then, much of that unfamiliarity may still be tempered by the fact that Falcon Heavy center cores share a large amount of commonality with the Falcon 9 first stages SpaceX’s workforce will remain deeply familiar with.
Indeed, Falcon Heavy’s second launch has already demonstrated this to some extent, occurring without issue more than 14 months after the rocket’s inaugural launch. It seems that the only real loss incurred by a ~16-month delay between Flights 3 and 4 will be having to wait another year (or more) to witness Falcon Heavy’s next launch.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Elon Musk’s net worth is nearing $800 billion, and it’s no small part due to xAI
A newly confirmed $20 billion xAI funding round valued the business at $250 billion, adding an estimated $62 billion to Musk’s fortune.
Elon Musk moved within reach of an unprecedented $800 billion net worth after private investors sharply increased the valuation of xAI Holdings, his artificial intelligence and social media company.
A newly confirmed $20 billion funding round valued the business at $250 billion, adding an estimated $62 billion to Musk’s fortune and widening his lead as the world’s wealthiest individual.
xAI’s valuation jump
Forbes confirmed that xAI Holdings was valued at $250 billion following its $20 billion funding round. That’s more than double the $113 billion valuation Musk cited when he merged his AI startup xAI with social media platform X last year. Musk owned roughly 49% of the combined company, which Forbes estimated was worth about $122 billion after the deal closed.
xAI’s recent valuation increase pushed Musk’s total net worth to approximately $780 billion, as per Forbes’ Real-Time Billionaires List. The jump represented one of the single largest wealth gains ever recorded in a private funding round.
Interestingly enough, xAI’s funding round also boosted the AI startup’s other billionaire investors. Saudi investor Prince Alwaleed Bin Talal Alsaud held an estimated 1.6% stake in xAI worth about $4 billion, so the recent funding round boosted his net worth to $19.4 billion. Twitter co-founder Jack Dorsey and Oracle co-founder Larry Ellison each owned roughly 0.8% stakes that are now valued at about $2.1 billion, increasing their net worths to $6 billion and $241 billion, respectively.
The backbone of Musk’s net worth
Despite xAI’s rapid rise, Musk’s net worth is still primarily anchored by SpaceX and Tesla. SpaceX represents Musk’s single most valuable asset, with his 42% stake in the private space company estimated at roughly $336 billion.
Tesla ranks second among Musk’s holdings, as he owns about 12% of the EV maker’s common stock, which is worth approximately $307 billion.
Over the past year, Musk crossed a series of historic milestones, becoming the first person ever worth $500 billion, $600 billion, and $700 billion. He also widened his lead over the world’s second-richest individual, Larry Page, by more than $500 billion.
News
Tesla Cybercab sighting confirms one highly requested feature
The feature will likely allow the Cybercab to continue operating even in conditions when its cameras could be covered with dust, mud, or road grime.
A recent sighting of Tesla’s Cybercab prototype in Chicago appears to confirm a long-requested feature for the autonomous two-seater.
The feature will likely allow the Cybercab to continue operating even in conditions when its cameras could be covered with dust, mud, or road grime.
The Cybercab’s camera washer
The Cybercab prototype in question was sighted in Chicago, and its image was shared widely on social media. While the autonomous two-seater itself was visibly dirty, its rear camera area stood out as noticeably cleaner than the rest of the car. Traces of water were also visible on the trunk. This suggested that the Cybercab is equipped with a rear camera washer.
As noted by Model Y owner and industry watcher Sawyer Merritt, a rear camera washer is a feature many Tesla owners have requested for years, particularly in snowy or wet regions where camera obstruction can affect visibility and the performance of systems like Full Self-Driving (FSD).
While only the rear camera washer was clearly visible, the sighting raises the possibility that Tesla may equip the Cybercab’s other external cameras with similar cleaning systems. Given the vehicle’s fully autonomous design, redundant visibility safeguards would be a logical inclusion.
The Cybercab in Tesla’s autonomous world
The Cybercab is Tesla’s first purpose-built autonomous ride-hailing vehicle, and it is expected to enter production later this year. The vehicle was unveiled in October 2024 at the “We, Robot” event in Los Angeles, and it is expected to be a major growth driver for Tesla as it continues its transition toward an AI- and robotics-focused company. The Cybercab will not include a steering wheel or pedals and is intended to carry one or two passengers per trip, a decision Tesla says reflects real-world ride-hailing usage data.
The Cybercab is also expected to feature in-vehicle entertainment through its center touchscreen, wireless charging, and other rider-focused amenities. Musk has also hinted that the vehicle includes far more innovation than is immediately apparent, stating on X that “there is so much to this car that is not obvious on the surface.”
News
Tesla seen as early winner as Canada reopens door to China-made EVs
Tesla had already prepared for Chinese exports to Canada in 2023 by equipping its Shanghai Gigafactory to produce a Canada-specific version of the Model Y.
Tesla seems poised to be an early beneficiary of Canada’s decision to reopen imports of Chinese-made electric vehicles, following the removal of a 100% tariff that halted shipments last year.
Thanks to Giga Shanghai’s capability to produce Canadian-spec vehicles, it might only be a matter of time before Tesla is able to export vehicles to Canada from China once more.
Under the new U.S.–Canada trade agreement, Canada will allow up to 49,000 vehicles per year to be imported from China at a 6.1% tariff, with the quota potentially rising to 70,000 units within five years, according to Prime Minister Mark Carney.
Half of the initial quota is reserved for vehicles priced under CAD 35,000, a threshold above current Tesla models, though the electric vehicle maker could still benefit from the rule change, as noted in a Reuters report.
Tesla had already prepared for Chinese exports to Canada in 2023 by equipping its Shanghai Gigafactory to produce a Canada-specific version of the Model Y. That year, Tesla began shipping vehicles from Shanghai to Canada, contributing to a sharp 460% year-over-year increase in China-built vehicle imports through Vancouver.
When Ottawa imposed a 100% tariff in 2024, however, Tesla halted those shipments and shifted Canadian supply to its U.S. and Berlin factories. With tariffs now reduced, Tesla could quickly resume China-to-Canada exports.
Beyond manufacturing flexibility, Tesla could also benefit from its established retail presence in Canada. The automaker operates 39 stores across Canada, while Chinese brands like BYD and Nio have yet to enter the Canadian market directly. Tesla’s relatively small lineup, which is comprised of four core models plus the Cybertruck, allows it to move faster on marketing and logistics than competitors with broader portfolios.