News
SpaceX’s next Falcon Heavy launch and landing could be more than a year away
According to comments made by US Air Force officials prior to SpaceX’s latest Falcon Heavy launch, the payload assigned to the military’s first fully-certified Falcon Heavy has been swapped with another, although the mission’s late-2020 launch target remains relatively unchanged.
This new information comes on the heels of the June 25th launch of Space Test Program 2 (STP-2), SpaceX’s third successful Falcon Heavy mission and a huge milestone for the rocket’s future as a competitive option for US military launches. Perhaps most importantly, it confirms – barring a surprise launch contract or internal Starlink mission – that Falcon Heavy’s next (and fourth) launch is unlikely to occur until late next year, a gap of at least 15-17 months.
Announced roughly four months after Falcon Heavy’s inaugural February 2018 launch debut, the USAF contracted with SpaceX to launch the ~6350 kg (14,000 lb) AFSPC-52 satellite no earlier than (NET) September 2020. In February 2019, Department of Defense contract announcements revealed that SpaceX had been awarded three military launch contracts, two for the National Reconnaissance Office (NROL-85 & NROL-87) and one for the USAF (AFSPC-44), all tentatively scheduled to launch in 2021.
First reported by Spaceflight Now, Col. Robert Bongiovi – director of the launch enterprise systems directorate at the Air Force’s Space and Missile Systems Center (AFSMC) – recently indicated that AFSPC-44 – not AFSPC-52 – is now scheduled to be the US military’s first post-certification Falcon Heavy launch. 52 and 44 have essentially swapped spots, with AFSPC-44 moving forward to NET Q4 (fall) 2020 while AFSPC-52 has been delayed to NET Q2 (spring) 2021.

The trouble with launch gaps
Although Bongiovi did not explicitly state that AFSPC-44 will be SpaceX’s next Falcon Heavy launch, there are no publicly-disclosed missions set to launch on the rocket in the interim. That could theoretically change, especially if SpaceX has plans to launch the massive rocket in support of an internal Starlink mission or even something more exotic, but the loss of both Block 5 center core B1055 and B1057 means that the company will have to build an entirely new center core.
SpaceX’s Falcon Heavy lead times are far superior to competitor ULA’s Delta IV Heavy production line, but the process of manufacturing new center cores is still quite lengthy. Critically, Falcon Heavy Block 5 center cores require strengthened octawebs, custom interstages, and propellant tanks that are significantly thicker than those used on Falcon 9. For all intents and purposes, a center core is a totally different rocket relative to a Falcon 9 booster, the latter being SpaceX’s primary focus at the company’s assembly line-style Hawthorne factory. It’s theoretically possible for a dedicated Falcon Heavy center core build to be expedited or leapfrogged forward in the production queue, but most long-lead Falcon 9 booster hardware physically cannot be redirected to speed up center core production.

Unless SpaceX was already in the process of building a new center core prior B1057’s unsuccessful landing attempt, it’s safe to assume that the next custom Falcon Heavy booster is unlikely to be completed until early 2020, if not later. In theory, this means that Falcon Heavy could be dormant for no less than 16 months between STP-2 and its next launch. Traditionally, that sort of lengthy gap between launches has been frowned upon by NASA, ULA, and oversight groups like GAO. If a given rocket doesn’t launch for a year or more, it can potentially pose a risk to reliability and raise costs as its production and launch teams have no satisfactory way to fully preserve their technical expertise.
This can be compared to attempting to become an expert at a musical instrument while only having access to said instrument one or two months a year, essentially impossible. In fact, at one point, NASA hoped to require its Space Launch System (SLS) rocket be able to launch no less than once per year, partly motivated by a desire to mitigate some of the deterioration that can follow extremely low launch cadences. Years later, financial constraints and years upon years of delays and budget overruns have made such a cadence effectively impossible for SLS/Orion, but the fact remains that launching a rocket just once every 18-24 months is likely to inflate both costs and risks.


Thankfully, SpaceX’s Falcon Heavy could scarcely be more different than NASA’s SLS and the retired Space Shuttle it derives most of its hardware from. Even if all things are held equal and not flying a Falcon Heavy center core for 16+ months increases risk and cost, center cores are still heavily derived from Falcon 9 booster technology, including plumbing, avionics, attitude control thrusters, Merlin 1D engines, landing legs, and launch facilities.
Furthermore, the center core is just one of five distinct assemblies that make up a given Falcon Heavy. Both side boosters are effectively Falcon 9 Block 5 boosters with nose cones instead of interstages and slight modifications to support booster attachment hardware, while the upper stage and payload fairing are the same for all Falcon launches. In other words, SpaceX’s workforce will continue to build, launch, land, and reuse dozens of Falcon 9 boosters – as well as upper stages payload fairings – between now and Falcon Heavy Flight 4, even if it’s NET Q4 2020. In a worst-case scenario, SpaceX production and launch staff will be unfamiliar and inexperienced with maybe 20% of Falcon Heavy – at least in a very rough sense. Even then, much of that unfamiliarity may still be tempered by the fact that Falcon Heavy center cores share a large amount of commonality with the Falcon 9 first stages SpaceX’s workforce will remain deeply familiar with.
Indeed, Falcon Heavy’s second launch has already demonstrated this to some extent, occurring without issue more than 14 months after the rocket’s inaugural launch. It seems that the only real loss incurred by a ~16-month delay between Flights 3 and 4 will be having to wait another year (or more) to witness Falcon Heavy’s next launch.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Cybertruck
Tesla Cybertruck undergoes interior mod that many owners wanted
Tesla Cybertruck is significantly different from traditional pickups on the market in a lot of ways. However, one feature that was recently modified with its interior was a highly requested characteristic that is present in other trucks, but was void from Cybertruck.
Tesla went with a five-seat configuration with Cybertruck: two in the front and three in the back. The spacious interior is matched with plenty of storage, especially up front, as a pass-through, center console, and other storage options, but some Tesla fans wanted something different: bench seating.
Bench seating is popular in many full-size pickups and allows three passengers to sit up front. The middle seat is usually accompanied by a fold-down storage unit with cupholders.
Tesla decided to opt for no bench seating up front, despite the fact that it equipped bench seating in the unveiling in 2019. Interior photos from the unveiling event from nearly six-and-a-half years ago show Tesla had originally planned to have a six-seat configuration.
This was adjusted after the company refined the design:

(Tesla Cybertruck interior configuration in 2019)
Despite Tesla abandoning this design, it does not mean owners were willing to accept it. One owner decided to modify their Tesla Cybertruck interior to equip that third seat between the driver’s and passenger’s thrones.
The fit is snug, and while it looks great, it is important to remember that this does not abide byregulations, as it would require an airbag to be technically legal. Please do not do this at home with your own Cybertruck:
- Credit: @blueskykites
- Credit: @blueskykites
- Credit: @blueskykites
The Cybertruck is a popular vehicle in terms of publicity, but its sales have been underwhelming since first delivered to customers back in 2023. It’s hard to believe it’s been out for two-and-a-half years, but despite this, Tesla has not been able to come through on its extensive order sheet.
This is mostly due to price, as Cybertruck was simply not as affordable as Tesla originally planned. Its three configurations were initially priced at $39,990, $49,990, and $69,990. At release, Cybertruck was priced above $100,000.
This priced out many of those who had placed orders, which is the main reason Cybertruck has not lived up to its expectations in terms of sales. The adjustments to the specific features, like the removal of the bench seat, likely did not impact sales as much as pricing did.
This modification shows some creativity by Tesla owners, but also shows that the Cybertruck could always be the subject of a potential refresh to include some of these features. Tesla routinely adjusts its vehicle designs every few years, so maybe the Cybertruck could get something like this if it chooses to refresh its all-electric pickup.
Elon Musk
Tesla CEO Elon Musk drops massive bomb about Cybercab
“And there is so much to this car that is not obvious on the surface,” Musk said.
Tesla CEO Elon Musk dropped a massive bomb about the Cybercab, which is the company’s fully autonomous ride-hailing vehicle that will enter production later this year.
The Cybercab was unveiled back in October 2024 at the company’s “We, Robot” event in Los Angeles, and is among the major catalysts for the company’s growth in the coming years. It is expected to push Tesla into a major growth phase, especially as the automaker is transitioning into more of an AI and Robotics company than anything else.
The Cybercab will enable completely autonomous ride-hailing for Tesla, and although its other vehicles will also be capable of this technology, the Cybercab is slightly different. It will have no steering wheel or pedals, and will allow two occupants to travel from Point A to Point B with zero responsibilities within the car.
Tesla shares epic 2025 recap video, confirms start of Cybercab production
Details on the Cybercab are pretty face value at this point: we know Tesla is enabling 1-2 passengers to ride in it at a time, and this strategy was based on statistics that show most ride-hailing trips have no more than two occupants. It will also have in-vehicle entertainment options accessible from the center touchscreen.
It will also have wireless charging capabilities, which were displayed at “We, Robot,” and there could be more features that will be highly beneficial to riders, offering a full-fledged autonomous experience.
Musk dropped a big hint that there is much more to the Cybercab than what we know, as a post on X said that “there is so much to this car that is not obvious on the surface.”
And there is so much to this car that is not obvious on the surface
— Elon Musk (@elonmusk) January 2, 2026
As the Cybercab is expected to enter production later this year, Tesla is surely going to include a handful of things they have not yet revealed to the public.
Musk seems to be indicating that some of the features will make it even more groundbreaking, and the idea is to enable a truly autonomous experience from start to finish for riders. Everything from climate control to emergency systems, and more, should be included with the car.
It seems more likely than not that Tesla will make the Cybercab its smartest vehicle so far, as if its current lineup is not already extremely intelligent, user-friendly, and intuitive.
Investor's Corner
Tesla Q4 delivery numbers are better than they initially look: analyst
The Deepwater Asset Management Managing Partner shared his thoughts in a post on his website.
Longtime Tesla analyst and Deepwater Asset Management Managing Partner Gene Munster has shared his insights on Tesla’s Q4 2025 deliveries. As per the analyst, Tesla’s numbers are actually better than they first appear.
Munster shared his thoughts in a post on his website.
Normalized December Deliveries
Munster noted that Tesla delivered 418k vehicles in the fourth quarter of 2025, slightly below Street expectations of 420k but above the whisper number of 415k. Tesla’s reported 16% year-over-year decline, compared to +7% in September, is largely distorted by the timing of the tax credit expiration, which pulled forward demand.
“Taking a step back, we believe September deliveries pulled forward approximately 55k units that would have otherwise occurred in December or March. For simplicity, we assume the entire pull-forward impacted the December quarter. Under this assumption, September growth would have been down ~5% absent the 55k pull-forward, a Deepwater estimate tied to the credit’s expiration.
“For December deliveries to have declined ~5% year over year would imply total deliveries of roughly 470k. Subtracting the 55k units pulled into September results in an implied December delivery figure of approximately 415k. The reported 418k suggests that, when normalizing for the tax credit timing, quarter-over-quarter growth has been consistently down ~5%. Importantly, this ~5% decline represents an improvement from the ~13% declines seen in both the March and June 2025 quarters.“
Tesla’s United States market share
Munster also estimated that Q4 as a whole might very well show a notable improvement in Tesla’s market share in the United States.
“Over the past couple of years, based on data from Cox Automotive, Tesla has been losing U.S. EV market share, declining to just under 50%. Based on data for October and November, Cox estimates that total U.S. EV sales were down approximately 35%, compared to Tesla’s just reported down 16% for the full quarter. For the first two months of the quarter, Cox reported Tesla market share of roughly a 65% share, up from under 50% in the September quarter.
“While this data excludes December, the quarter as a whole is likely to show a material improvement in Tesla’s U.S. EV market share.“


