News
SpaceX Falcon 9 rocket nails first operational NASA astronaut launch [updated]
Update: SpaceX has successfully resolved a handful of minor thermal control issues facing the brand new Crew Dragon capsule currently ferrying four astronauts in low Earth orbit (LEO).
As previously noted, shortly after the spacecraft reached orbit, two redundant thermal control system pumps registered pressure spikes, pushing Crew Dragon to use the backup pump. SpaceX was able to resolve that issue, effectively restarting the pumps and confirming healthy operation. Several hours later, the backup pump (“Loop B”) suffered another minor issue but was again returned to healthy operations. Simultaneously, Crew-1 astronauts found themselves stuck at an (admittedly comfortable) cabin temperature of 23C (~73F).
More pressingly, three of four heaters used to warm the propellant fed to Crew Dragon’s small Draco maneuvering and attitude control thrusters were automatically disabled a few hours after liftoff. Essential for most operations in orbit and necessary for Dragon to be allowed to remain docked with the ISS, restoring the functionality of at least one of the three heaters was essential, and SpaceX was thankfully able to restore function to all three by relaxing excessively conservative limits in the spacecraft’s flight software. Thanks to SpaceX’s fast work, Dragon is now in perfect health and ready for two crucial Draco burns at 11:20 am and 12 pm EST (UTC-5) on Monday, November 16th and is still scheduled to arrive at the ISS around 11 pm EST.
Right on schedule, a SpaceX Falcon 9 rocket has successfully lifted off on the company’s operational NASA astronaut launch debut, sending four crew members on their way to the International Space Station (ISS) in a historic moment for commercial spaceflight.
Days prior, NASA and SpaceX completed a multi-day “flight readiness review (FRR),” the results of which made SpaceX the first private company in human history to be qualified by a national space agency for routine astronaut launches. As is now more or less routine, the SpaceX Falcon 9 rocket assigned to NASA’s Crew-1 mission performed flawlessly over the 12 minutes it was involved in the launch, including nominal booster and upper stage performance, a successful booster landing at sea, and a smooth Dragon deployment from Falcon 9’s expendable second stage.
In a small point of concern, Crew Dragon capsule C207 (colloquially named Dragon Resilience by its crew) appeared to suffer a minor hardware or software fault shortly after orbital insertion, offering the first public glimpse behind the scenes as ground teams coordinated with Dragon’s orbiting astronaut crew to diagnose and fix the issue.

According to information revealed by SpaceX and NASA officials as they interacted with Crew-1 NASA astronauts Mike Hopkins, Victor Glover, Shannon Walker, and Japanese (JAXA) astronaut Soichi Noguchi, Crew Dragon’s fault detection software was tripped sometime after reaching orbit. Both thermal control system (TCS) “loop” pumps – likely referring to pumps used to circulate a liquid-based radiator system to maintain capsule temperature – experienced off-nominal pressure spikes, causing the spacecraft computer to switch to the second pump (“Loop B”).
As SpaceX’s main earth-to-ground communications team member (CapCom) noted, the TCS pump issue was far from critical given that both pumps appeared to be healthy – and one of those two redundant pumps functioning healthily – moments after Dragon alerted its passengers to the issue. Deemed to be not a showstopper, SpaceX continued the mission and permitted Crew Dragon to begin its first orbit-raising thruster burn – the first of a fairly complex series of ‘phasing’ burns needed to safely rendezvous with the International Space Station (ISS).



Unfortunately, due to a 24-hour weather delay from November 14th to November 15th, the complexities of orbital rendezvous mean that Crew Dragon’s Crew-1 mission to the ISS will involve a roughly day-long cruise phase. Had SpaceX been able to launch on the 14th, the cruise phase would have been just 8.5 hours long – perhaps the fastest crewed US space station rendezvous ever. Crew-1 will thus align quite closely with SpaceX’s Demo-2 astronaut launch debut, although likely not interspersed with manual astronaut piloting tests this time around.
On top of Crew Dragon’s thus far successful performance, Falcon 9 also completed a task critical for future Crew Dragon launches when new booster B1061 safely landed aboard SpaceX drone ship Of Course I Still Love You (OCISLY). While normally a distinctly secondary objective, booster recovery was all but essential for SpaceX and NASA during the Crew-1 launch after NASA’s recent reveal that B1061 has been assigned to launch Crew-2 as early as March 31st, 2021. In the likely event that the Falcon 9 booster is in good condition and NASA signs off after shadowing SpaceX’s refurbishment process, SpaceX will also become the first private company in history to launch astronauts into orbit on a flight-proven rocket booster. Additionally, thanks to plans to reuse Crew Dragon capsule C206 of Demo-2 fame, Crew-2 will also mark the first time in history that US astronauts launch into orbit in a reused space capsule.



If the Crew-1 cruise phases goes according to plan, Crew Dragon will autonomously ferry Hopkins, Glover, Walker, and Noguchi from a ~200 km (~125 mi) parking orbit to the International Space Station (ISS) between now and Monday, November 16th, nominally docking with the space station around 11 pm EST (04:00 UTC 17 Nov). From liftoff to reentry, Crew-1 is expected to be the longest continuous spaceflight of a US spacecraft in American history, spending approximately six months in orbit. For JAXA astronaut Soichi Noguchi, his Crew-1 launch also made him the third astronaut in human history to fly to orbit on three separate vehicles.
Ultimately, for SpaceX, the company has never been closer to achieving its foundational goal of enabling the affordable expansion of humanity into space than it is after today’s successful Crew-1 launch.
Investor's Corner
Tesla stock closes at all-time high on heels of Robotaxi progress
Tesla stock (NASDAQ: TSLA) closed at an all-time high on Tuesday, jumping over 3 percent during the day and finishing at $489.88.
The price beats the previous record close, which was $479.86.
Shares have had a crazy year, dipping more than 40 percent from the start of the year. The stock then started to recover once again around late April, when its price started to climb back up from the low $200 level.
This week, Tesla started to climb toward its highest levels ever, as it was revealed on Sunday that the company was testing driverless Robotaxis in Austin. The spike in value pushed the company’s valuation to $1.63 trillion.
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
It is the seventh-most valuable company on the market currently, trailing Nvidia, Apple, Alphabet (Google), Microsoft, Amazon, and Meta.
Shares closed up $14.57 today, up over 3 percent.
The stock has gone through a lot this year, as previously mentioned. Shares tumbled in Q1 due to CEO Elon Musk’s involvement with the Department of Government Efficiency (DOGE), which pulled his attention away from his companies and left a major overhang on their valuations.
However, things started to rebound halfway through the year, and as the government started to phase out the $7,500 tax credit, demand spiked as consumers tried to take advantage of it.
Q3 deliveries were the highest in company history, and Tesla responded to the loss of the tax credit with the launch of the Model 3 and Model Y Standard.
Additionally, analysts have announced high expectations this week for the company on Wall Street as Robotaxi continues to be the focus. With autonomy within Tesla’s sights, things are moving in the direction of Robotaxi being a major catalyst for growth on the Street in the coming year.
Elon Musk
Tesla needs to come through on this one Robotaxi metric, analyst says
“We think the key focus from here will be how fast Tesla can scale driverless operations (including if Tesla’s approach to software/hardware allows it to scale significantly faster than competitors, as the company has argued), and on profitability.”
Tesla needs to come through on this one Robotaxi metric, Mark Delaney of Goldman Sachs says.
Tesla is in the process of rolling out its Robotaxi platform to areas outside of Austin and the California Bay Area. It has plans to launch in five additional cities, including Houston, Dallas, Miami, Las Vegas, and Phoenix.
However, the company’s expansion is not what the focus needs to be, according to Delaney. It’s the speed of deployment.
The analyst said:
“We think the key focus from here will be how fast Tesla can scale driverless operations (including if Tesla’s approach to software/hardware allows it to scale significantly faster than competitors, as the company has argued), and on profitability.”
Profitability will come as the Robotaxi fleet expands. Making that money will be dependent on when Tesla can initiate rides in more areas, giving more customers access to the program.
There are some additional things that the company needs to make happen ahead of the major Robotaxi expansion, one of those things is launching driverless rides in Austin, the first city in which it launched the program.
This week, Tesla started testing driverless Robotaxi rides in Austin, as two different Model Y units were spotted with no occupants, a huge step in the company’s plans for the ride-sharing platform.
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
CEO Elon Musk has been hoping to remove Safety Monitors from Robotaxis in Austin for several months, first mentioning the plan to have them out by the end of 2025 in September. He confirmed on Sunday that Tesla had officially removed vehicle occupants and started testing truly unsupervised rides.
Although Safety Monitors in Austin have been sitting in the passenger’s seat, they have still had the ability to override things in case of an emergency. After all, the ultimate goal was safety and avoiding any accidents or injuries.
Goldman Sachs reiterated its ‘Neutral’ rating and its $400 price target. Delaney said, “Tesla is making progress with its autonomous technology,” and recent developments make it evident that this is true.
Investor's Corner
Tesla gets bold Robotaxi prediction from Wall Street firm
Last week, Andrew Percoco took over Tesla analysis for Morgan Stanley from Adam Jonas, who covered the stock for years. Percoco seems to be less optimistic and bullish on Tesla shares, while still being fair and balanced in his analysis.
Tesla (NASDAQ: TSLA) received a bold Robotaxi prediction from Morgan Stanley, which anticipates a dramatic increase in the size of the company’s autonomous ride-hailing suite in the coming years.
Last week, Andrew Percoco took over Tesla analysis for Morgan Stanley from Adam Jonas, who covered the stock for years. Percoco seems to be less optimistic and bullish on Tesla shares, while still being fair and balanced in his analysis.
Percoco dug into the Robotaxi fleet and its expansion in the coming years in his latest note, released on Tuesday. The firm expects Tesla to increase the Robotaxi fleet size to 1,000 vehicles in 2026. However, that’s small-scale compared to what they expect from Tesla in a decade.
Tesla expands Robotaxi app access once again, this time on a global scale
By 2035, Morgan Stanley believes there will be one million Robotaxis on the road across multiple cities, a major jump and a considerable fleet size. We assume this means the fleet of vehicles Tesla will operate internally, and not including passenger-owned vehicles that could be added through software updates.
He also listed three specific catalysts that investors should pay attention to, as these will represent the company being on track to achieve its Robotaxi dreams:
- Opening Robotaxi to the public without a Safety Monitor. Timing is unclear, but it appears that Tesla is getting closer by the day.
- Improvement in safety metrics without the Safety Monitor. Tesla’s ability to improve its safety metrics as it scales miles driven without the Safety Monitor is imperative as it looks to scale in new states and cities in 2026.
- Cybercab start of production, targeted for April 2026. Tesla’s Cybercab is a purpose-built vehicle (no steering wheel or pedals, only two seats) that is expected to be produced through its state-of-the-art unboxed manufacturing process, offering further cost reductions and thus accelerating adoption over time.
Robotaxi stands to be one of Tesla’s most significant revenue contributors, especially as the company plans to continue expanding its ride-hailing service across the world in the coming years.
Its current deployment strategy is controlled and conservative to avoid any drastic and potentially program-ruining incidents.
So far, the program, which is active in Austin and the California Bay Area, has been widely successful.