Connect with us
Falcon 9 B1047 seen aboard SpaceX drone ship Of Course I Still Love You. (SpaceX) Falcon 9 B1047 seen aboard SpaceX drone ship Of Course I Still Love You. (SpaceX)

SpaceX

SpaceX’s first dedicated Starlink launch announced as mass production begins

Published

on

SpaceX has announced a launch target of May 2019 for the first batch of operational Starlink satellites in a sign that the proposed internet satellite constellation has reached a major milestone, effectively transitioning from pure research and development to serious manufacturing.

R&D will continue as SpaceX Starlink engineers work to implement the true final design of the first several hundred or thousand spacecraft, but a significant amount of the team’s work will now be centered on producing as many Starlink satellites as possible, as quickly as possible. With anywhere from 4400 to nearly 12,000 satellites needed to complete the three major proposed phases of Starlink, SpaceX will have to build and launch a minimum of ~2200 satellites in the next five years, averaging 37 high-performance, low-cost spacecraft built and launched every month for the next 60 months.

A shift in the Stars

Despite the major challenges ahead of SpaceX, things seem to be going quite smoothly with the current mix of manufacturing and development. As previously reported on Teslarati, SpaceX CEO Elon Musk forced the Starlink group through a painful reorganization in the summer of 2018, challenging the remaining leaders and their team to launch the first batch of operational Starlink satellites no later than June 2019. As a consequence, a sort of compromise had to be reached where one additional group of quasi-prototype satellites would be launched before settling on a truly final design for serious mass-production.

According to SpaceX filings with the FCC, the first group of operational satellites – potentially anywhere from 75 to 1000 or more – will rely on just one band (“Ku”) for communications instead of the nominal two (“Ku” and “Ka”), a change that SpaceX says will significantly simplify the first spacecraft. By simplifying them, SpaceX believes it can expedite Starlink’s initial deployment without losing a great deal of performance or interfering with constellations from competitors like OneWeb.

OneWeb’s preliminary satellite production facility. (OneWeb)
SpaceX’s own Starlink deployment mechanism may look quite similar to this OneWeb-inspired render from Arianespace. (Arianespace)

Somewhere along the line, SpaceX would iteratively improve each subsequent ‘generation’ of Starlink satellites until they reached the nominal performance characteristics outlined in the company’s original constellation application. Knowing SpaceX, improvements would continue for as long as lessons continued to be learned from operating hundreds and eventually thousands of orbital spacecraft.

As one concrete example, recent SpaceX FCC documents stated that the first 75 Starlink spacecraft would feature a less-optimized reentry design, meaning that a select few components will not entirely burn up during reentry, creating debris that poses a slight added risk in the eyes of regulatory bodies like the FCC. After those first 75 spacecraft are built and launched, SpaceX will introduce upgrades – already planned and designed – that will reduce the surviving reentry debris (and thus their risk to humans below) to zero.

While the FCC has yet to grant SpaceX’s requested modifications, the other major goal is to reduce the operating orbit of the first phase of 1584 satellites to 550 km (340 mi), a change that SpaceX says will drastically reduce the potential lifespan of any orbital debris in the unlikely event of their creation. A lower altitude also places a major cushion between SpaceX’s first ~1500 satellites and the orbits of several other planned constellations, including OneWeb and Telesat.

Hello, Production Hell, my old friend

Meanwhile, SpaceX’s Starlink program has begun the often painful steps of transitioning from a venture primarily focused on research and development to one focused mainly on building production lines and supply chains and manufacturing hardware. SpaceX’s Starlink facilities are currently housed in three nearby buildings located in Redmond, Washington, likely offering approximately 150,000 square feet (14,000 m^2) for a mix of office, development, and production spaces. At least one of the three non-office buildings could potentially become dedicated to production while one building – approximately 40,000 ft^2 (~3500 m^2) – has already been completely transformed into a prototype of a Starlink satellite production line, supporting manufacturing for first several dozen quasi-prototype spacecraft. For reference, OneWeb’s dedicated satellite factory will feature around 100,000 square feet of space dedicated primarily to production, while the constellation’s satellites will be roughly half as large as SpaceX’s proposed Starlink satellites (~400 kg, 880 lb).

Mass-producing spacecraft at the scale needed to build even half of those needed for the first phase of ~4400 Starlink satellites will be a feat unprecedented in the history of the space industry. Barring FCC exemptions (possible but unlikely), SpaceX needs to launch ~2200 Starlink satellites between now and April 2024. To complete the first phase, the final number of satellites rises to ~4400. Adding on a proposed constellation of very low Earth orbit (VLEO) Starlink satellites, that number rises once more to a bit less than 12,000. Meanwhile, the cost of the satellites needs to be kept as low as possible while their performance is maximized. To put it in automotive terms, SpaceX needs to find a way to do the satellite equivalent of going from building Tesla’s original Roadster to the 2020 Roadster in just a handful of iterative generations and a few years.

One of the first two prototype Starlink satellites separates from Falcon 9’s upper stage, February 2018. (SpaceX)

Perhaps SpaceX will be able to garner invaluable insight from the lessons its sister company learned during Model 3’s torturous “production hell”, in which the car company had to grow its production volume by almost a magnitude as quickly as possible. Ironically, it may even be the case that SpaceX has the easier task relative to Tesla.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Starlink makes a difference in Philippine province ravaged by typhoon

The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.

Published

on

Credit: Starlink/X

The Philippines’ Department of Information and Communications Technology (DICT) is using Starlink to provide connectivity in the municipality of Masbate, which was affected by Severe Tropical Storm Opong (international name Bualoi). 

The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.

Starlink units enhance connectivity

DICT Secretary Henry Aguda visited the province to assess internet and communications infrastructure and deliver 10 additional Starlink satellite units, according to the Philippine News Agency. The is move aimed at strengthening emergency response and restore digital access to the area.

Aguda met with Masbate Governor Richard Kho during his visit and joined telecommunications representatives in inspecting provincial offices, free charging stations, and Wi-Fi connectivity sites for residents. 

According to DICT officer-in-charge Rachel Ann Grabador, three Starlink units, 10 routers, and a 2kW solar-powered station have already been deployed in the province following the typhoon. The units have been installed at key facilities such as Masbate Airport’s communications tower and the Masbate Provincial Hospital’s administrative office. 

Advertisement

Game-changing technology

Thanks to its global coverage and its capability to provide high-speed internet connectivity even in remote areas, Starlink has become the best communications solution that can be deployed in the aftermath of natural disasters. Its low-cost kits, which are capable of of providing fast internet speeds, are also portable, making them easy to deploy in areas that are damaged by natural disasters.

As noted in a Space.com report, there are currently 8,475 Starlink satellites in orbit, of which 8,460 are working, as of September 25, 2025. Initially, SpaceX had filed documents with International regulators to place about 4,000 Starlink satellites in Low Earth Orbit. Over time, however, the number of planned Starlink satellites has grown, with SpaceX aiming to launch as many as 42,000 Starlink satellites to fully connect the globe.

Continue Reading

Elon Musk

SpaceX shares targets and tentative launch date for Starship Flight 11

As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.

Published

on

Credit: SpaceX

SpaceX is targeting Monday, October 13, for the eleventh test flight of its Starship launch system. The launch window is expected to open at 6:15 p.m. CT. 

Similar to past Starship missions, a live webcast will begin about 30 minutes before launch on SpaceX’s website, X account, and X TV app. As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.

Super Heavy booster landing test

The upcoming mission will build on the data gathered from Starship’s tenth test flight, focusing on booster performance and upper-stage capabilities. The Super Heavy booster, previously flown on Flight 8, will launch with 24 flight-proven Raptor engines, according to SpaceX in a blog post on its official website. Its primary objective is to validate a new landing burn engine configuration designed for the next generation of Super Heavy.

Instead of returning to Starbase, the Super Heavy booster will follow a trajectory toward the Gulf of America. During descent, it will ignite 13 engines before transitioning to a five-engine divert phase and then completing the landing burn with three central engines, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America.

Starship upper-stage experiments

The Starship upper stage for Flight 11 will carry out a series of in-space demonstrations, including the deployment of eight Starlink simulators that are comparable in size to next-generation Starlink satellites. These payloads will reenter and burn up during descent. A planned Raptor engine relight in orbit will also provide valuable test data.

Advertisement

To evaluate the upper stage’s resilience during reentry, SpaceX engineers have intentionally removed heat shield tiles from select areas to stress-test Starship’s thermal protection system. The vehicle will attempt new maneuvers during descent, including a banking profile and subsonic guidance algorithms intended to simulate future return-to-launch-site missions. The upper stage will ultimately target a splashdown in the Indian Ocean.

SpaceX has already posted a link to the livestream for Starship Flight 11: 

Continue Reading

News

Astra CEO shades SpaceX over employee workload and Starbase

Elon Musk once stated that no one ever changed the world working just 40 hours a week.

Published

on

Credit: SpaceX

Elon Musk once stated that no one ever changed the world working just 40 hours a week. This was something that is openly known among his companies. They have the potential to change the world, but they require a lot of hours.

SpaceX’s working environment was recently criticized by Chris Kemp, the chief executive officer of Astra. During some remarks at the Berkeley Space Symposium 2025 earlier this month, Kemp shared some sharp remarks about the Elon Musk-led private space enterprise.

SpaceX working conditions and Starbase

As noted in a report from Ars Technica, Kemp discussed a variety of topics during his talk. These included Astra’s successes and failures, as well as his thoughts on other players in the spaceflight industry. To be fair to Kemp, he practically shaded every major rival, calling Firefly’s engine “garbage,” dubbing Blue Origin as slow, and stating that Rocket Lab’s Electron rocket is “too small.”

SpaceX also received some colorful words from the Astra CEO. According to Kemp, SpaceX is leading the way in the spaceflight industry and Elon Musk is admirable in the way that he is willing to fail in order to move quickly. He did, however, highlight that Astra offers a significantly better working environment than SpaceX.

“It’s more fun than SpaceX, because we’re not on the border of Mexico where they’ll chop your head off if you accidentally take a left turn. And you don’t have to live in a trailer. And we don’t make you work six and a half days a week, 12 hours a day. It’s appreciated if you do, but not required,” Kemp said.

Advertisement

Elon Musk’s demands

It is known that Elon Musk demands quite a lot from his employees. However, it is also known that Musk-led companies move very fast and, in more ways than one, they have accomplished world-changing feats. Tesla, for example, has practically ushered in the era of the modern electric vehicle, and SpaceX has made space attainable through its reusable rockets. With this in mind, employees at Musk’s companies, and this of course includes SpaceX, are likely proud of their long work hours. 

No one could probably go to Mars in this lifetime with a team that really works just 40 hours a week, after all.

Continue Reading

Trending