Connect with us
Falcon 9 B1047 seen aboard SpaceX drone ship Of Course I Still Love You. (SpaceX) Falcon 9 B1047 seen aboard SpaceX drone ship Of Course I Still Love You. (SpaceX)

SpaceX

SpaceX’s first dedicated Starlink launch announced as mass production begins

Published

on

SpaceX has announced a launch target of May 2019 for the first batch of operational Starlink satellites in a sign that the proposed internet satellite constellation has reached a major milestone, effectively transitioning from pure research and development to serious manufacturing.

R&D will continue as SpaceX Starlink engineers work to implement the true final design of the first several hundred or thousand spacecraft, but a significant amount of the team’s work will now be centered on producing as many Starlink satellites as possible, as quickly as possible. With anywhere from 4400 to nearly 12,000 satellites needed to complete the three major proposed phases of Starlink, SpaceX will have to build and launch a minimum of ~2200 satellites in the next five years, averaging 37 high-performance, low-cost spacecraft built and launched every month for the next 60 months.

A shift in the Stars

Despite the major challenges ahead of SpaceX, things seem to be going quite smoothly with the current mix of manufacturing and development. As previously reported on Teslarati, SpaceX CEO Elon Musk forced the Starlink group through a painful reorganization in the summer of 2018, challenging the remaining leaders and their team to launch the first batch of operational Starlink satellites no later than June 2019. As a consequence, a sort of compromise had to be reached where one additional group of quasi-prototype satellites would be launched before settling on a truly final design for serious mass-production.

According to SpaceX filings with the FCC, the first group of operational satellites – potentially anywhere from 75 to 1000 or more – will rely on just one band (“Ku”) for communications instead of the nominal two (“Ku” and “Ka”), a change that SpaceX says will significantly simplify the first spacecraft. By simplifying them, SpaceX believes it can expedite Starlink’s initial deployment without losing a great deal of performance or interfering with constellations from competitors like OneWeb.

OneWeb’s preliminary satellite production facility. (OneWeb)
SpaceX’s own Starlink deployment mechanism may look quite similar to this OneWeb-inspired render from Arianespace. (Arianespace)

Somewhere along the line, SpaceX would iteratively improve each subsequent ‘generation’ of Starlink satellites until they reached the nominal performance characteristics outlined in the company’s original constellation application. Knowing SpaceX, improvements would continue for as long as lessons continued to be learned from operating hundreds and eventually thousands of orbital spacecraft.

As one concrete example, recent SpaceX FCC documents stated that the first 75 Starlink spacecraft would feature a less-optimized reentry design, meaning that a select few components will not entirely burn up during reentry, creating debris that poses a slight added risk in the eyes of regulatory bodies like the FCC. After those first 75 spacecraft are built and launched, SpaceX will introduce upgrades – already planned and designed – that will reduce the surviving reentry debris (and thus their risk to humans below) to zero.

While the FCC has yet to grant SpaceX’s requested modifications, the other major goal is to reduce the operating orbit of the first phase of 1584 satellites to 550 km (340 mi), a change that SpaceX says will drastically reduce the potential lifespan of any orbital debris in the unlikely event of their creation. A lower altitude also places a major cushion between SpaceX’s first ~1500 satellites and the orbits of several other planned constellations, including OneWeb and Telesat.

Hello, Production Hell, my old friend

Meanwhile, SpaceX’s Starlink program has begun the often painful steps of transitioning from a venture primarily focused on research and development to one focused mainly on building production lines and supply chains and manufacturing hardware. SpaceX’s Starlink facilities are currently housed in three nearby buildings located in Redmond, Washington, likely offering approximately 150,000 square feet (14,000 m^2) for a mix of office, development, and production spaces. At least one of the three non-office buildings could potentially become dedicated to production while one building – approximately 40,000 ft^2 (~3500 m^2) – has already been completely transformed into a prototype of a Starlink satellite production line, supporting manufacturing for first several dozen quasi-prototype spacecraft. For reference, OneWeb’s dedicated satellite factory will feature around 100,000 square feet of space dedicated primarily to production, while the constellation’s satellites will be roughly half as large as SpaceX’s proposed Starlink satellites (~400 kg, 880 lb).

Mass-producing spacecraft at the scale needed to build even half of those needed for the first phase of ~4400 Starlink satellites will be a feat unprecedented in the history of the space industry. Barring FCC exemptions (possible but unlikely), SpaceX needs to launch ~2200 Starlink satellites between now and April 2024. To complete the first phase, the final number of satellites rises to ~4400. Adding on a proposed constellation of very low Earth orbit (VLEO) Starlink satellites, that number rises once more to a bit less than 12,000. Meanwhile, the cost of the satellites needs to be kept as low as possible while their performance is maximized. To put it in automotive terms, SpaceX needs to find a way to do the satellite equivalent of going from building Tesla’s original Roadster to the 2020 Roadster in just a handful of iterative generations and a few years.

One of the first two prototype Starlink satellites separates from Falcon 9’s upper stage, February 2018. (SpaceX)

Perhaps SpaceX will be able to garner invaluable insight from the lessons its sister company learned during Model 3’s torturous “production hell”, in which the car company had to grow its production volume by almost a magnitude as quickly as possible. Ironically, it may even be the case that SpaceX has the easier task relative to Tesla.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk shares SpaceX’s directive that destroys a prevalent media narrative

Musk’s comments followed Starlink’s initiatives for people affected by severe flooding in Indonesia and Cyclone Ditwah in Sri Lanka.

Published

on

UK Government, CC BY 2.0 , via Wikimedia Commons

Elon Musk recently shared SpaceX’s standing policy to offer free Starlink service during natural disasters worldwide, highlighting the company’s commitment to pursue aid over profit during times of need. 

Musk’s comments followed Starlink’s initiatives for people affected by severe flooding in Indonesia and Cyclone Ditwah in Sri Lanka.

Starlink activates free service in Indonesia and Sri Lanka

Starlink recently announced free service for those impacted by severe flooding in Indonesia’s Sumatra region, partnering with the government to deploy terminals rapidly to the hardest-hit areas. The offer extends to new and existing customers through December, restoring connectivity in zones where traditional networks have failed due to infrastructure damage.

Musk quoted the post on X, writing, “SpaceX standard policy is to make Starlink free whenever there is a natural disaster somewhere in the world. It would not be right to profit from misfortune.”

Starlink extended the same relief to Sri Lanka amid Cyclone Ditwah, coordinating with local authorities for additional support. The cyclone battered the island nation with heavy rains and winds, disrupting communications for thousands. Free access also lasts until year-end, emphasizing Starlink’s role in bridging gaps during crises.

Advertisement
-->

“For those affected by the severe flooding in Indonesia and Sri Lanka in the aftermath of Cyclone Ditwah, Starlink is providing free service to new and existing customers through the end of December 2025. We’re also working with the Indonesian government to rapidly deploy terminals and restore connectivity to the hardest-hit areas on Sumatra, as well as with the Sri Lankan government to provide additional assistance,” Starlink wrote in a post on its official website. 

Musk’s companies routinely provide aid

Musk’s firms have a track record of providing critical support in crises, often without fanfare, challenging portrayals of him as a comic book villain intent on enriching himself on the backs of a suffering populace. In January 2024 alone, Tesla opened Superchargers for free in Japan’s Hokuriku region after a magnitude 7.6 earthquake killed at least 55 and injured hundreds.

Similar efforts include Starlink deployments for the 2023 Maui wildfires, 2024 Hurricane Helene in North Carolina, and floods in Texas, where the service was used to help facilitate emergency coordination. These actions, which total millions in waived fees and logistics, demonstrate a proactive ethos among Musk’s companies, with Musk noting in past interviews that such aid stems from engineering solutions over optics.

The initiatives also provide a direct rebuttal of Musk’s characterization on mainstream media, which tends to lean negatively. This has become much more notable in recent years as Musk adopted more conservative policies. These negative sentiments came to a head earlier this year when Tesla stores, vehicles, and even some owners, were attacked during waves of anti-Tesla protests.

Advertisement
-->
Continue Reading

Elon Musk

SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films

A Starship that launches from the Florida site could touch down on the same site years later.

Published

on

Credit: SpaceX/X

The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.

According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies. 

Booster in Minutes, Ship in (possibly) years

The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.

“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.

This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.

Advertisement
-->

Noise and emissions flagged but deemed manageable

While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.

Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.

SpaceX Starship Environmental Impact Statement by Simon Alvarez

Continue Reading

Elon Musk

SpaceX maintains unbelievable Starship target despite Booster 18 incident

It appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement.

Published

on

Credit: SpaceX/X

SpaceX recently shared an incredibly ambitious and bold update about Starship V3’s 12th test flight. 

Despite the anomaly that damaged Booster 18, SpaceX maintained that it was still following its plans for the upgraded spacecraft and booster for the coming months. Needless to say, it appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement. 

Starship V3 is still on a rapid development path

SpaceX’s update was posted through the private space company’s official account on social media platform X. As per the company, “the Starbase team plans to have the next Super Heavy booster stacked in December, which puts it on pace with the test schedule planned for the first Starship V3 vehicle and associated ground systems.” 

SpaceX then announced that Starship V3’s maiden flight is still expected to happen early next year. “Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X. 

Elon Musk mentioned a similar timeline on X earlier this year. In the lead up to Starshp Flight 11, which proved flawless, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.” Musk has also mentioned that Starship V3 should be good enough to use for initial Mars missions.

Advertisement
-->

Booster 18 failure not slowing Starship V3’s schedule

SpaceX’s bold update came after Booster 18 experienced a major anomaly during gas system pressure testing at SpaceX’s Massey facility in Starbase, Texas. SpaceX confirmed in a post on X that no propellant was loaded, no engines were installed, and personnel were positioned at a safe distance when the booster’s lower section crumpled, resulting in no injuries.

Still, livestream footage showed significant damage around the liquid oxygen tank area of Booster 18, leading observers to speculate that the booster was a total loss. Booster 18 was among the earliest vehicles in the Starship V3 series, making the failure notable. Despite the setback, Starship V3’s development plans appear unchanged, with SpaceX pushing ahead of its Q1 2026 test flight target.

Continue Reading