Connect with us

News

SpaceX Starship stacked with ballast for hop test debut

Starship SN4 has been outfitted with a ballast weight to enable its inaugural flight test. (NASASpaceflight - bocachicagal)

Published

on

SpaceX has installed a custom-built ballast atop its fourth full-scale Starship prototype, a sign that the company is rapidly approaching the ship’s first Starhopper-style hop test.

Although CEO Elon Musk officially “redirected” SpaceX’s resources away from Starship’s first flight and towards Crew Dragon’s NASA astronaut launch debut, the company continues to work around the clock to ready Starship SN4 for the program’s biggest test yet. Designed with the goal of creating a fully-reusable, ultra-capable launch vehicle that is unprecedentedly affordable, SpaceX’s Starship spacecraft and Super Heavy booster have made impressive progress over the last 12 or so months.

In July and August 2019, Starhopper – a low-fidelity testbed and proof of concept – successfully performed two untethered hop tests, ultimately flying more than 150m (~500 ft) above ground before safely touching down. Three months later, the first full-scale Starship prototype was destroyed almost immediately after its first pressure test began, a failure that lead SpaceX to expedite factory upgrades. Just six months later, SpaceX has completed multiple successful tests, including pressure tests that pushed beyond the pressures needed for safe human spaceflight, several full wet dress rehearsals (WDRs) with live propellant, and three Raptor engine static fires. In fewer words, Starship is ready for its next big test: flight.

SpaceX technicians prepare to complete a jerryrigged ballast weight for Starship SN4. (NASASpaceflight – bocachicagal)

However, Starship SN4 currently has just one Raptor engine installed and will remain in that configuration for its inaugural hop, expected to reach a maximum altitude identical to Starhopper (150m/500ft). The odd configuration means that the rocket will be propelled by asymmetric thrust, as Starship’s ‘thrust puck’ engine section is designed to hold three Raptor engines in a triangular formation. Raptor is capable of producing up to 200 metric tons (~440,000 lbf) of thrust with an unclear level of throttle control (likely mediocre according to comments made by Elon Musk).

Impressively, although it might seem reasonable to assume that Starship SN4 is about as heavy as the ~120 ton Starhopper, the clear and present need to install substantial ballast suggests otherwise. Combined with comments made during SN4’s April 2020 transport from factory to launch site, it appears that even SpaceX’s early Starship engine sections weigh just 50-60 metric tons (110,000-125,000 lb) empty. That weight doesn’t account for the flaps, heat shield, nose section, or many other heavy components that orbital Starships will eventually need but is still impressive.

Starship SN4 was transported to the launch pad on April 23rd. (NASASpaceflight – bocachicagal)
On May 27th, SpaceX installed a massive ballast weight on top of the Starship prototype. (NASASpaceflight – bocachicagal)

That impressive weight reduction, Raptor’s inability to safely throttle low, and the FAA’s lack of interest in dozens (up to hundreds) of tons of explosive propellant flying above or around populated areas poses its own challenges for the first full-scale Starship flight. The addition of ballast helpfully solves (or at least alleviates) several of those issues. Notably, ballast can prevent SpaceX from having to fuel Starship SN4 with dozens of extra tons of explosive propellant to counteract the high thrust of its single engine and permit a safe launch and landing.

At the same time, if Starship SN4’s wet weight is reduced by carrying less propellant during its first flight, that actually exacerbates the problem of Raptor’s small throttle range, as a lighter ship would be much harder to manage as the engine rapidly burns propellant and thus loses mass. With ballast, Raptor won’t have to throttle as low as it would otherwise have to to ensure a gentle rate of deceleration. Built out of sheet steel and two spare rolls of the same steel used to form Starship rings, Starship SN4’s new ballast likely increases its dry mass by some 50% or more (25+ metric tons).

Advertisement
(NASASpaceflight – bocachicagal)
Starship SN4’s solid steel ballast. (NASASpaceflight – bocachicagal)

Pending Crew Dragon’s inaugural astronaut launch, now scheduled no earlier than 3:22 pm EDT (19:22 UTC), May 30th after weather delayed the first May 27th launch attempt, Starship SN4 has no testing periods on the calendar at the moment. Speaking around May 23rd, Musk stated that the ship was likely at least a “few weeks” away from its flight debut, suggesting that the ship will perform another static fire test to prepare for its first hop as early as next week. Stay tuned for updates as SpaceX’s works towards two very exciting Crew Dragon and Starship milestones.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship gets FAA nod for ninth test flight

The FAA has given the green light for Starship’s ninth test flight.

Published

on

(Credit: SpaceX)

SpaceX has received FAA approval for the ninth test flight of the Starship rocket. The approval was delayed due to the federal agency finishing its comprehensive safety review of the eighth flight earlier this year.

The FAA said in a statement that it has determined that SpaceX has “satisfactorily addressed the causes of the mishap, and therefore, the Starship vehicle can return to flight.”

The eighth test flight occurred back on March 6. SpaceX completed a successful liftoff of Starship and the Super Heavy Booster, before the two entered stage separation a few minutes after launch.

Starship Flight 8: SpaceX nails Super Heavy booster catch but loses upper stage

The booster returned and was caught by the chopsticks on the launch pad, completing the second successful booster catch in the program’s history. However, SpaceX lost contact with Starship in the upper atmosphere.

The ship broke up and reentered the atmosphere over Florida and the Bahamas.

The debris situation caused the FAA to initiate a mishap investigation:

The FAA said it will verify that SpaceX implements all the corrective actions on Flight 9 that it discovered during the mishap investigation.

There is no current confirmed launch window, but the earliest it could take off from Starbase is Tuesday, May 27, at 6:30 p.m. local time.

To prevent any injuries and potentially limit any damage, the FAA has stayed in contact with various countries that could be impacted if another loss of vehicle occurs:

“The FAA is in close contact and collaboration with the United Kingdom, Turks & Caicos Islands, Bahamas, Mexico, and Cuba as the agency continues to monitor SpaceX’s compliance with all public safety and other regulatory requirements.”

The agency has also stated that the Aircraft Hazard Area (AHA) is approximately 1,600 nautical miles and extends eastward from the Starbase, Texas, launch site through the Straits of Florida, including the Bahamas and Turks & Caicos.

For flight 8, the AHA was just 885 nautical miles.

Continue Reading

News

Hyundai begins real-world testing of AI-powered EV charging robot

Published

on

Credit: Hyundai

Hyundai announced on Thursday that it has officially launched real-world testing of its AI-powered EV charging robot, which it is referring to as the ACR.

The Korean company is partnering with both Kia and Incheon International Airport for the testing phase, which was launched with a memorandum of understanding (MOU). The pilot program is going to be used to lay the groundwork for future robot use for EV charging.

Incheon already has a reputation that aligns with the pilot program as it has the largest eco-friendly vehicle infrastructure in Korea, according to Korea JoongAng Daily, which first reported the launch of the pilot program.

Hyundai is partnering with Kia’s Robotics Lab to provide hardware and software solutions for this early rollout.

Yan Hee-won, President of Hyundai Motor’s R&D Division, said:

“This marks an important turning point in validating the practical value of future mobility technologies. With customized automatic charging solutions, we aim to deliver a more convenient and enhanced mobility experience for users.”

The testing phase will be limited in the sense that the charging robot will be deployed for a fleet of eco-friendly airport vehicles. Those who park their EVs at the airport will not be able to use it for use while they’re traveling — at least at first.

Eventually, it will become a great way to give vehicles range while the owners are off on trips.

Tesla had a similar idea several years ago, which it shared viral videos of back in 2015.

Tesla “snake charger” wasn’t just a creepy one-off, suggests Elon Musk

Musk said in 2020 that Tesla still had the intention of making it. However, it has shifted to wireless induction charging, which seems to be a better option simply because of fewer moving parts and better compatibility with the upcoming Robotaxi fleet.

Tesla flexes Robotaxi wireless charging — autonomy from top to bottom

Tesla displayed its wireless charging idea at the “We, Robot” event last year:

Continue Reading

Elon Musk

How Tesla could benefit from the ‘Big Beautiful Bill’ that axes EV subsidies

Tesla has a few paths to limit damage from the elimination of tax credits.

Published

on

President Donald J. Trump purchases a Tesla on the South Lawn, Tuesday, March 11, 2025. (Official White House Photo by Molly Riley)
President Donald J. Trump purchases a Tesla on the South Lawn, Tuesday, March 11, 2025. (Official White House Photo by Molly Riley)

The United States House of Representatives passed President Trump’s “Big Beautiful Bill” by a vote of 215 to 214 on Thursday, effectively bringing an end to many EV subsidy programs, like the $7,500 tax credit, by the end of this year.

The bill will not only eliminate the $7,500 credit on new EV purchases, but also the $4,000 credit given on the purchase of used electric vehicles, and a $1,000 credit on the installation of Level 2 chargers. It will also impact solar subsidies that help generate clean energy in a residential setting.

EVs would also be subject to a $250 road use fee.

All of these things sound like negatives — truly because they are. Those who are not in a financial position to buy an EV this year, even with the tax credit, might not be able to afford them in the coming years either, unless manufacturers are able to bring pricing to a level that is more accessible to consumers.

In theory, President Trump’s focus on bringing manufacturing back to America would bring prices down, but it won’t happen overnight. Companies will take many years to completely bring manufacturing and part sourcing to the United States.

However, Tesla could feel some positives from this bill, and it all comes down to timing. Of course, in the long term, it wouldn’t be great for the company, especially if it did not have two things going on right now: a slightly lagging delivery pace and the introduction of affordable models.

Tax Credit Sunsetting Advantage

Sunsetting the $7,500 tax credit means one thing: those who have been in limbo over buying an EV from Tesla are going to have to make a decision on whether they want to buy this year and still have access to the credit, or test their luck and hope for price reductions.

More than likely, those who have been on the fence will be willing to pull the trigger this year, and Tesla will definitely gain some sales from this fact alone. Other automakers will, too.

This could help offset Tesla’s slow start to the year, which has been caused by the changeover of production lines of the Model Y across each of its factories globally.

Affordable Models

Tesla said earlier this year that it will roll out affordable models in the first half of 2025. These cars are expected to be around the $30,000 mark, but the company has not shed any true information on what they will cost.

Potential affordable Tesla “Model 2/Model Q” test car spotted anew in Giga Texas

Ideally, the cars would cost under $30,000 without the EV tax credit, which would be more than accessible for many car buyers in the United States.

The introduction of models that are not in need of a tax credit to be affordable to the masses. This would help offset some of the losses Tesla might feel from cars losing the tax credit.

Continue Reading

Trending