News
SpaceX rolls out first new Starship prototype in nine months
For the first time in more than nine months, SpaceX has rolled a new Starship prototype to its Starbase, Texas launch facilities in the hopes of kicking off qualification testing in the near future.
The new activity exemplifies just how different – and more subdued – Starbase’s last year has been compared to the year prior. However, it also signals new hope for a significantly more eventful 2022 as SpaceX once again finds itself preparing for Starship’s first orbital launch attempt – albeit with an entirely different rocket.

The last time SpaceX rolled a new and functional Starship prototype from the factory to the test stand was on August 13th, 2021, when Starship S20 was transported back to the pad for the second time that month. On August 5th, the same unfinished Starship was stacked on top of Super Heavy booster B4, briefly assembling the largest rocket ever built. With the luxury of hindsight, it’s now clear that that particular milestone was more of a photo-op than a technical achievement. Nonetheless, Ship 20’s path was far more productive than Booster 4’s. The Starship returned to the Starbase factory for a few days of finishing touches before arriving back at the pad on August 13th. Only in the last week of September did Ship 20 finally begin its first significant tests, followed by its first Raptor static fire in mid-October. In mid-November, Ship 20 completed the first of several successful six-Raptor static fires.
Ultimately, by the time Ship 20 was retired in May 2022, the Starship was arguably fully ready to attempt to reach orbit or at least perform some kind of ambitious hypersonic test flight. However, Super Heavy Booster 4 never made it even a fraction of the way to a similar level of flight readiness and SpaceX never received the FAA environmental approval or launch license needed for an orbital launch attempt.
Only now, in May 2022, does it finally look likely that SpaceX will finally receive the necessary permissions for a limited orbital test flight campaign in the near future. While it’s hard to say if Booster 4 and Ship 20 could have supported some kind of launch campaign if permission had been granted months ago, what’s clear is that all aspects – flight hardware, pad hardware, and bureaucracy – have been chronically delayed to the point that Booster 4 and Ship 20 are now heavily outdated.
In their place, now, stand Super Heavy B7 and Starship S24 – the new ‘chosen ones’ assigned to Starship’s orbital launch debut. Both feature extensive design changes and account for an upgraded version of the Raptor engine and countless lessons learned over the better part of a year spent troubleshooting and testing their predecessors. While it did get off to a rocky start, Booster 7 has already completed several cryogenic proof tests and is in the middle of being outfitted with 33 new Raptor engines.

On the other hand, perhaps indicating SpaceX’s satisfaction with Ship 20’s performance, Starship S24 has been on the back burner in comparison. Only on May 26th, 2022 did SpaceX finally finish the prototype to the point that it was ready to begin qualification testing. Missing hundreds of TPS tiles and an aerocover cap, Ship 24 was quickly moved into position at a sort of drive-by test stand where it appears the prototype will first need to pass basic pressure and cryogenic proof tests.
If it passes those tests, SpaceX will then install Ship 24 on a suborbital launch and test stand (Suborbital Pad A) that has been significantly modified for qualification testing. Rather than leaping straight into static fires, SpaceX will minimize the risk of catastrophic failure by first using hydraulic rams to simulate the thrust of six Raptor V2 engines while Starship’s steel tanks and plumbing are chilled to cryogenic temperatures. Only after Ship 24 completes stress testing will SpaceX install new Raptor engines and prepare to replicate Ship 20’s success with several static fires.

Thanks to Raptor V2’s improvements, Ship 24 will likely need to withstand around 1400 tons (~3.1M lbf) of thrust at liftoff – almost 25% more than Ship 20 ever experienced. Beyond a sturdier thrust section, Ship 24 is also the first Starship SpaceX has outfitted with a next-generation nose; the first with a significant landing propellant (‘header’) tank redesign; and the first with a potentially functional payload bay and door.
Assuming Ship 24 passes all planned cryoproof and thrust simulation tests, it remains to be seen if SpaceX will return the Starship to Starbase factory facilities or – like with Ship 20 – install Raptors and finish its heat shield and thermal protection while sitting on the test stand. SpaceX has two test windows currently scheduled: one from 6am to 12pm CDT on Friday, May 27th and the other from 10am to 10pm CDT on Tuesday, May 31st.
News
Tesla exec pleads for federal framework of autonomy to U.S. Senate Committee
Tesla executive Lars Moravy appeared today in front of the U.S. Senate Commerce Committee to highlight the importance of modernizing autonomy standards by establishing a federal framework that would reward innovation and keep the country on pace with foreign rivals.
Moravy, who is Tesla’s Vice President of Vehicle Engineering, strongly advocated for Congress to enact a national framework for autonomous vehicle development and deployment, replacing the current patchwork of state-by-state rules.
These rules have slowed progress and kept companies fighting tooth-and-nail with local legislators to operate self-driving projects in controlled areas.
Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count
Moravy said the new federal framework was essential for the U.S. to “maintain its position in global technological development and grow its advanced manufacturing capabilities.
He also said in a warning to the committee that outdated regulations and approval processes would “inhibit the industry’s ability to innovate,” which could potentially lead to falling behind China.
Being part of the company leading the charge in terms of autonomous vehicle development in the U.S., Moravy highlighted Tesla’s prowess through the development of the Full Self-Driving platform. Tesla vehicles with FSD engaged average 5.1 million miles before a major collision, which outpaces that of the human driver average of roughly 699,000 miles.
Moravy also highlighted the widely cited NHTSA statistic that states that roughly 94 percent of crashes stem from human error, positioning autonomous vehicles as a path to dramatically reduce fatalities and injuries.
🚨 Tesla VP of Vehicle Engineering, Lars Moravy, appeared today before the U.S. Senate Commerce Committee to discuss the importance of outlining an efficient framework for autonomous vehicles:
— TESLARATI (@Teslarati) February 4, 2026
Skeptics sometimes point to cybersecurity concerns within self-driving vehicles, which was something that was highlighted during the Senate Commerce Committee hearing, but Moravy said, “No one has ever been able to take over control of our vehicles.”
This level of security is thanks to a core-embedded central layer, which is inaccessible from external connections. Additionally, Tesla utilizes a dual cryptographic signature from two separate individuals, keeping security high.
Moravy also dove into Tesla’s commitment to inclusive mobility by stating, “We are committed with our future products and Robotaxis to provide accessible transportation to everyone.” This has been a major point of optimism for AVs because it could help the disabled, physically incapable, the elderly, and the blind have consistent transportation.
Overall, Moravy’s testimony blended urgency about geopolitical competition, especially China, with concrete safety statistics and a vision of the advantages autonomy could bring for everyone, not only in the U.S., but around the world, as well.
News
Tesla Model Y lineup expansion signals an uncomfortable reality for consumers
Tesla launched a new configuration of the Model Y this week, bringing more complexity to its lineup of the vehicle and adding a new, lower entry point for those who require an All-Wheel-Drive car.
However, the broadening of the Model Y lineup in the United States could signal a somewhat uncomfortable reality for Tesla fans and car buyers, who have been vocal about their desire for a larger, full-size SUV.
Tesla has essentially moved in the opposite direction through its closure of the Model X and its continuing expansion of a vehicle that fits the bill for many, but not all.
Tesla brings closure to Model Y moniker with launch of new trim level
While CEO Elon Musk has said that there is the potential for the Model Y L, a longer wheelbase configuration of the vehicle, to enter the U.S. market late this year, it is not a guarantee.
Instead, Tesla has prioritized the need to develop vehicles and trim levels that cater to the future rollout of the Robotaxi ride-hailing service and a fully autonomous future.
But the company could be missing out on a massive opportunity, as SUVs are a widely popular body style in the U.S., especially for families, as the tighter confines of compact SUVs do not support the needs of a large family.
Although there are other companies out there that manufacture this body style, many are interested in sticking with Tesla because of the excellent self-driving platform, expansive charging infrastructure, and software performance the vehicles offer.
Additionally, the lack of variety from an aesthetic and feature standpoint has caused a bit of monotony throughout the Model Y lineup. Although Premium options are available, those three configurations only differ in terms of range and performance, at least for the most part, and the differences are not substantial.
Minor Expansions of the Model Y Fail to Address Family Needs for Space
Offering similar trim levels with slight differences to cater to each consumer’s needs is important. However, these vehicles keep a constant: cargo space and seating capacity.
Larger families need something that would compete with vehicles like the Chevrolet Tahoe, Ford Expedition, or Cadillac Escalade, and while the Model X was its largest offering, that is going away.
Tesla could fix this issue partially with the rollout of the Model Y L in the U.S., but only if it plans to continue offering various Model Y vehicles and expanding on its offerings with that car specifically. There have been hints toward a Cyber-inspired SUV in the past, but those hints do not seem to be a drastic focus of the company, given its autonomy mission.
Model Y Expansion Doesn’t Boost Performance, Value, or Space
You can throw all the different badges, powertrains, and range ratings on the same vehicle, it does not mean it’s going to sell better. The Model Y was already the best-selling vehicle in the world on several occasions. Adding more configurations seems to be milking it.
The true need of people, especially now that the Model X is going away, is going to be space. What vehicle fits the bill of a growing family, or one that has already outgrown the Model Y?
Not Expanding the Lineup with a New Vehicle Could Be a Missed Opportunity
The U.S. is the world’s largest market for three-row SUVs, yet Tesla’s focus on tweaking the existing Model Y ignores this. This could potentially result in the Osborne Effect, as sales of current models without capturing new customers who need more seating and versatility.
Expansions of the current Model Y offerings risk adding production complexity without addressing core demands, and given that the Model Y L is already being produced in China, it seems like it would be a reasonable decision to build a similar line in Texas.
Listening to consumers means introducing either the Model Y L here, or bringing a new, modern design to the lineup in the form of a full-size SUV.
Elon Musk
Elon Musk reiterates Tesla Optimus’ most sci-fi potential yet
Musk shared his comments in a series of posts on social media platform X.
Elon Musk recently reiterated one of the most ambitious forecasts for Tesla’s humanoid robot, Optimus, stating it could become the first real-world example of a Von Neumann machine. He also noted once more that Optimus would be Tesla’s biggest product.
Musk shared his comments in a series of posts on social media platform X.
Optimus as a von Neumann machine
In response to a post on X that pondered on sci-fi timelines becoming real, Musk wrote that “Optimus will be the first Von Neumann machine, capable of building civilization by itself on any viable planet.” In a separate post, Musk wrote that Optimus will be Tesla’s “biggest product ever,” a phrase he has used in the past to describe the humanoid robot’s importance to the electric vehicle maker.
A Von Neumann machine is a class of theoretical self-replicating systems originally proposed in the mid-20th century by the mathematician John von Neumann. In his concept, von Neumann described machines that could travel to other worlds, use local materials to create copies of themselves, and carry out large-scale tasks without outside intervention.
Elon Musk’s broader plans
Considering Musk’s comments, it appears that Optimus would eventually be capable of performing complex work autonomously in environments beyond Earth. If Optimus could achieve such a feat, it could very well unlock humanity’s capability to explore locations beyond Earth. The idea of space exploration becomes more than feasible.
Elon Musk has discussed space-based AI compute, large-scale robotic production, and the role of SpaceX’s Starship in transporting hardware and materials to other planets. While Musk did not detail how Optimus would fit with SpaceX’s exploration activities, his Von Neumann machine comments suggest he is looking at Tesla’s robotics as part of a potential interplanetary ecosystem.