According to SpaceX COO/President Gwynne Shotwell and a Turkish satellite industry official, Starship and Super Heavy may have a role to play in the launch of Turksat’s first domestically-procured communications satellite.
Per Shotwell’s specific phrasing, this comes as a bit of a surprise. Built by Airbus Defense and Space, SpaceX is already on contract to launch Turksat’s 5A and 5B communications satellites as early as Q2 2020 and Q1 2021, respectively. The spacecraft referred to in the context of Starship is the generation meant to follow 5A/5B: Turksat 6A and any follow-on variants. Turksat’s 6-series satellites will be designed and manufactured domestically rather than procured from non-Turkish heavyweights like Airbus or SSL. However, the Turksat 6A satellite’s current baseline specifications would make it an extremely odd fit for a launch vehicle as large as Starship/Super Heavy.
Curiously, in written statements to Turkish media outlets, Turkish Aerospace Industries (TAI) referred to a “Turksat 6A2” satellite for the first time ever. Prior to comments made at the Satellite 2019 conference, Turksat’s prospects beyond 5A/5B were simply referred to as “Turksat 6A”, a ~4300 kg (9500 lb) domestically-built communications satellite scheduled for completion no earlier than the end of 2020. Turksat 5A and 5B will both be approximately 4500 kg (9900 lb), well within the capability of the flight-proven Falcon 9 rockets they are expected to launch on.
Why, then, might Starship “[potentially] work for the next Turksat project”, as suggested by Shotwell? Referring to what Turksat GM Cenk Sen then described as “6A2”, Shotwell noted that the satellite would be “quite a large, complex satellite.” While undeniably massive relative to almost anything else, the 4300-kg Turksat 6A is actually in the middle of the road (maybe even on the smaller side) relative to most geostationary communications satellites built and launched in the last few years.
We’re gonna need a bigger speculation…
SpaceX COO and President Gwynne Shotwell would know this as intimately as anyone, given her essential role at the head of the launch services provider. Most recently, SpaceX used Falcon Heavy to launch Arabsat 6A (6500 kg/14,300 lb) to a uniquely high transfer orbit of ~90,000 km (56,000 mi). In the second half of 2018, Falcon 9 was also tasked with launching Telstar 18V (7060 kg/15,560 lb) and 19V (7076 kg/15,600 lb) to geostationary transfer orbits (GTO), with 19V technically becoming the heaviest commercial communications satellite ever launched.
SpaceX is also just a few days away from launching 60 Starlink test satellites, reportedly set to become the company’s heaviest payload ever with a mass greater than ~13,000 kg (30,000 lb). Put simply, SpaceX is about as familiar as one can possibly get with not only launching – but even building – truly massive and complex satellite payloads.
In short, it appears that “Turksat 6A2” may refer to an extremely ambitious follow-on to Turksat 6A (perhaps 6A1?). To warrant the use of Starship over the then highly-proven and well-paved Falcon 9 or Heavy, Turksat 6A2 would indeed have to be what Shotwell referred to as “quite a large, complex satellite”. In a recoverable configuration, Falcon 9 is capable of placing about 5500-6000 kg into a full GTO. Falcon Heavy allows for 8000-10000 kg, with the latter option assuming that all three boosters land on drone ships. Steel Starship’s performance – with or without tanker refueling – is effectively an unknown quantity at this point in time, although SpaceX CEO Elon Musk says more Starship info will be provided this year at a dedicated June 20th event.
Aside from questions of payload performance of Starship/Super Heavy relative to Falcon 9/Heavy, it’s unclear when the next-gen SpaceX rocket will actually be ready to start launching commercial payloads. Back in December 2018, Musk estimated that Starship had a 60% chance of reaching orbit by the end of 2020, with confidence on the rise as the company transitioned BFR’s structure from carbon composites to stainless steel. Four months after that estimate, a low-fidelity Starship prototype – nicknamed Starhopper – successfully completed two Raptor-powered test fires, straining a few feet into the air against large tethers. Meanwhile, Raptor testing continues in McGregor, Texas, while progress is also being made on what is said to be the first orbit-capable Starship prototype a few thousand feet from Starhopper.
A long path to orbit
Before SpaceX can begin orbital launch attempts with Starship, the company will need to build a new launch complex (or develop a floating launch platform), complete with processing and integration facilities also built from the ground up. Additionally, at least one massive Super Heavy booster will be needed for Starship to deliver more than just itself to orbit. Starship’s unprecedented metallic heat shield will need to be made flight-ready, while a minimum of 38 Raptor engines will need to be built and tested. In short, a huge amount of work needs to be done before Starship and its associated facilities will be capable of launching high-value customer payloads.
In other words, any prospective Cargo Starship customers will necessarily be shopping for launches in 2021-2022 at the absolute earliest. According to TAI’s Sen, SpaceX and its Starship vehicle will be just “one of the candidate[s]” eligible to compete for the Turksat 6A2 launch contract, hinting that these new comments are just the first of many more to come.
Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.