Connect with us

News

SpaceX will transition all launches to Falcon 9 Block 5 rockets after next mission

Published

on

SpaceX’s 13th reuse of a Falcon 9 booster marked the second-to-last orbital mission of older boosters before the rocket’s highly reusable Block 5 upgrade takes over all future commercial launches.

If only for the staggering rise of SpaceX’s program of reusable rockets, June 4’s Falcon 9 launch was novel and thrilling in part because its flight-proven booster was intentionally stripped of all reuse-related hardware to bestow as much performance as possible on the mission’s large geostationary communications satellite payload, named SES-12. While this practice of intentionally expending non-Block 5 flight-proven boosters after launch has actually been fairly common over the course of the last seven Falcon 9 reflights, excluding Falcon Heavy – SpaceX is, in essence, betting heavily on the viability and success of the rocket’s quasi-final Block 5 upgrade.

SpaceX’s second to last commercial launch with a non-Block 5 Falcon 9 was completed around 1 am EST June 4. It’s once flight-proven booster ended its life in the Atlantic soon after liftoff. (Tom Cross)

Following June 4’s SES-12 launch, after which Falcon 9 S1 (B1040, previously flown on the September 2017 launch of a classified X-37B spaceplane) arced down its final parabola into the Atlantic, SpaceX has just a single commercial launch of a Block 4 booster scheduled. In fact, that launch happens to be next up on the company’s manifest: currently no earlier than (NET) June 28, CRS-15 will see the same booster (B1045) that launched NASA’s TESS exoplanet observatory scarcely ten weeks prior send a refurbished Cargo Dragon to the International Space Station. After CRS-15, which will also see its booster expended in the Atlantic, just one flightworthy Block 4 rocket will remain in SpaceX’s fleet, and that Falcon 9 booster is understood to be undergoing refurbishment for its final reflight. That mission, however, is a suborbital demonstration designed to prove that SpaceX’s Crew Dragon spacecraft can wrest its human passengers out of harm’s way in the event of a launch vehicle failure during flight (SpaceX already proved it can accomplish the same task while the rocket is still on the launch pad in a 2015 demo).

https://twitter.com/_TomCross_/status/1003509362906853376

No turning back now

While a critical path for SpaceX’s future of reliably delivering crew to orbit, its suborbital nature makes categorically distinct from past and future Falcon launches, all of which have been conducted with the intent of placing payload(s) into Earth orbit. Thus we arrive back at B1045 and CRS-15, currently scheduled as both SpaceX’s next launch and the final orbital mission before Falcon 9/Heavy Block 5 becomes the company’s only operational route to space for at least the next two years, give or take half a year. It’s thus somewhat poetic that the booster tasked with CRS-15 will easily smash SpaceX’s previous record for refurbishment (135 days) by almost a factor of two, going from drone ship recovery to reflight in as few as 71 days. Whatever it becomes, that refurbishment record will likely be broken by the first Block 5 reflight, a trend that will almost certainly continue until SpaceX reaches Musk’s fabled 24-hour turnaround, perhaps before the end of next year.

Advertisement

Extrapolating from the launch company’s recent history, the culmination of CRS-15 will potentially leave SpaceX with as few as two Falcon 9 Block 5 boosters as its entire flight-ready rocket fleet, despite anywhere from 12 to 16 launches remaining on the second half of the company’s 2018 manifest. Currently standing at six boosters produced in 2018, roughly eight to be completed before the end of the year per COO and President Gwynne Shotwell (in this case likely boosters B1048-1056), an achievement that would grow the ranks of the company’s fleet of new Block 5 boosters to ten total. But, assuming a core is delivered from the Hawthorne factory every month, SpaceX will need to reuse Block 5 boosters as early as July to prevent considerable delays to their 2018 manifest, delays that would undoubtedly push multiple missions into 2019.

Here’s to hoping that the Block 5 upgrade is as incredible of a success as SpaceX has designed it to be. Follow the Teslarati team for real-time updates, glimpses behind the scenes, and photos from Teslarati’s East and West Coast photographers.

Teslarati   –   Instagram Twitter

Tom CrossTwitter

Advertisement

Pauline Acalin  Twitter

Eric Ralph Twitter

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Advertisement

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Advertisement
Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Advertisement

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

Advertisement

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Advertisement

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Advertisement

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

Advertisement

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Advertisement
Continue Reading

News

Tesla Model 3 wins Edmunds’ Best EV of 2026 award

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

Published

on

Credit: Tesla

The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.

This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.

The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

In its Top Rated EVs piece on its website, it said about the Model 3:

Advertisement

“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”

Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:

“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”

The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.

Advertisement
Continue Reading