Connect with us

News

SpaceX will transition all launches to Falcon 9 Block 5 rockets after next mission

Published

on

SpaceX’s 13th reuse of a Falcon 9 booster marked the second-to-last orbital mission of older boosters before the rocket’s highly reusable Block 5 upgrade takes over all future commercial launches.

If only for the staggering rise of SpaceX’s program of reusable rockets, June 4’s Falcon 9 launch was novel and thrilling in part because its flight-proven booster was intentionally stripped of all reuse-related hardware to bestow as much performance as possible on the mission’s large geostationary communications satellite payload, named SES-12. While this practice of intentionally expending non-Block 5 flight-proven boosters after launch has actually been fairly common over the course of the last seven Falcon 9 reflights, excluding Falcon Heavy – SpaceX is, in essence, betting heavily on the viability and success of the rocket’s quasi-final Block 5 upgrade.

SpaceX’s second to last commercial launch with a non-Block 5 Falcon 9 was completed around 1 am EST June 4. It’s once flight-proven booster ended its life in the Atlantic soon after liftoff. (Tom Cross)

Following June 4’s SES-12 launch, after which Falcon 9 S1 (B1040, previously flown on the September 2017 launch of a classified X-37B spaceplane) arced down its final parabola into the Atlantic, SpaceX has just a single commercial launch of a Block 4 booster scheduled. In fact, that launch happens to be next up on the company’s manifest: currently no earlier than (NET) June 28, CRS-15 will see the same booster (B1045) that launched NASA’s TESS exoplanet observatory scarcely ten weeks prior send a refurbished Cargo Dragon to the International Space Station. After CRS-15, which will also see its booster expended in the Atlantic, just one flightworthy Block 4 rocket will remain in SpaceX’s fleet, and that Falcon 9 booster is understood to be undergoing refurbishment for its final reflight. That mission, however, is a suborbital demonstration designed to prove that SpaceX’s Crew Dragon spacecraft can wrest its human passengers out of harm’s way in the event of a launch vehicle failure during flight (SpaceX already proved it can accomplish the same task while the rocket is still on the launch pad in a 2015 demo).

https://twitter.com/_TomCross_/status/1003509362906853376

No turning back now

While a critical path for SpaceX’s future of reliably delivering crew to orbit, its suborbital nature makes categorically distinct from past and future Falcon launches, all of which have been conducted with the intent of placing payload(s) into Earth orbit. Thus we arrive back at B1045 and CRS-15, currently scheduled as both SpaceX’s next launch and the final orbital mission before Falcon 9/Heavy Block 5 becomes the company’s only operational route to space for at least the next two years, give or take half a year. It’s thus somewhat poetic that the booster tasked with CRS-15 will easily smash SpaceX’s previous record for refurbishment (135 days) by almost a factor of two, going from drone ship recovery to reflight in as few as 71 days. Whatever it becomes, that refurbishment record will likely be broken by the first Block 5 reflight, a trend that will almost certainly continue until SpaceX reaches Musk’s fabled 24-hour turnaround, perhaps before the end of next year.

Extrapolating from the launch company’s recent history, the culmination of CRS-15 will potentially leave SpaceX with as few as two Falcon 9 Block 5 boosters as its entire flight-ready rocket fleet, despite anywhere from 12 to 16 launches remaining on the second half of the company’s 2018 manifest. Currently standing at six boosters produced in 2018, roughly eight to be completed before the end of the year per COO and President Gwynne Shotwell (in this case likely boosters B1048-1056), an achievement that would grow the ranks of the company’s fleet of new Block 5 boosters to ten total. But, assuming a core is delivered from the Hawthorne factory every month, SpaceX will need to reuse Block 5 boosters as early as July to prevent considerable delays to their 2018 manifest, delays that would undoubtedly push multiple missions into 2019.

Advertisement
-->

Here’s to hoping that the Block 5 upgrade is as incredible of a success as SpaceX has designed it to be. Follow the Teslarati team for real-time updates, glimpses behind the scenes, and photos from Teslarati’s East and West Coast photographers.

Teslarati   –   Instagram Twitter

Tom CrossTwitter

Pauline Acalin  Twitter

Eric Ralph Twitter

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading

News

Tesla FSD (Supervised) is about to go on “widespread” release

In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”

Published

on

Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin. 

The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.

FSD V14.2 improvements

FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.

A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.

Elon Musk’s predicted wide release

The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”

FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles. 

Advertisement
-->
Continue Reading

News

Tesla FSD V14.2 starts rolling out to initial batch of vehicles

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Published

on

Credit: Grok Imagine

Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.

So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well. 

Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots. 

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.

Advertisement
-->

Release Notes

2025.38.9.5

Currently Installed

FSD (Supervised) v14.2

Full Self-Driving (Supervised) v14.2 includes:

  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
  • Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!

Upcoming Improvements:

  • Overall smoothness and sentience
  • Parking spot selection and parking quality
Continue Reading