News
SpaceX wins NASA funds to study a Falcon Heavy-launched Moon lander
NASA has announced a series of awards as part of its 2024 Moon return ambitions, providing up to $45.5M for 11 companies to study lunar landers, spacecraft, and in-space refueling technologies.
Among those selected for studies are SpaceX, Blue Origin, Masten Space, and the Sierra Nevada Corporation, alongside usual suspects like Boeing and Lockheed Martin. The chances of NASA actually achieving a crewed return to the surface of the Moon by 2024 are admittedly minuscule. However, with the space agency’s relatively quick three-month turnaround from accepting proposals to awarding studies, those chances of success will at least be able to continue skirting the realm of impossibility for now. In fact, SpaceX believes its Moon lander could be ready for a lunar debut as early as 2023.
Do the OldSpace Limbo!
Almost exactly 90 days (three months) since NASA released its lunar lander request for proposal (RFP), the 11 US companies selected for awards can now begin mature their designs, concepts of operations, and even build prototypes in a select few cases. At least based on the volume of awards and prototypes funded, the bulk of the $45.5M available for these studies unsurprisingly appears to have gone to Boeing and Lockheed. The duo of military-industrial complex heavyweights have maintained a decades-old stranglehold over NASA’s human spaceflight procurement.
In the last 13 years, the companies – combined – have carefully extracted no less than $35B from NASA, all of which has thus far produced a single launch of a half-finished prototype spacecraft (Orion) on a contextually irrelevant rocket (Delta IV Heavy) in 2014. The SLS rocket and Orion spacecraft remain almost perpetually delayed and are unlikely to complete their uncrewed launch debut until 2021, if not later.

SpaceX enters the lunar lander fray
“SpaceX was founded with the goal of helping humanity become a spacefaring civilization. We are excited to extend our long-standing partnership with NASA to help return humans to the Moon, and ultimately to venture beyond.”
– SpaceX President and COO Gwynne Shotwell
SpaceX was one of the 11 companies to receive NASA funding for a lunar lander-related design study. By all appearances, the company has been analyzing this potential use-case for some time. What they offer is significantly more complex than what NASA’s press release described as “one descent element study”. First and foremost, however, it must be stressed that these NASA funded studies – particularly those relegated to design, with no prototype builds – are really just concepts on paper. The NASA funding will help motivate companies to at least analyze and flesh out their actual capabilities relative to the task and time frame at hand, but there is no guarantee that more than one or two of the 11 studies will translate into serious hardware contracts.
Regardless of the many qualifications, SpaceX’s proposed descent module (i.e. Moon lander) is undeniably impressive. If SpaceX were to win a development contract, the lander would be based on flight-proven Falcon 9 and Crew Dragon subsystems wherever possible, translating into a vehicle that would have significant flight heritage even before its first launch. That first Moon landing attempt could come as early as 2023 and would utilize the performance of SpaceX’s own Falcon Heavy, currently the most powerful rocket in operation.
No renders have been released at this stage but it’s safe to assume that a SpaceX Moon lander would be somewhat comparable to Blue Origin’s just-announced Blue Moon lander, capable of delivering ~6.5t (14,300 lb) to the lunar surface. Rather than hydrogen and oxygen, SpaceX would instead use either Crew Dragon’s NTO/MMH propulsion or base the lander on Falcon 9’s extremely mature liquid kerosene/oxygen upper stage and Merlin Vacuum (MVac) engine.
Impressively, the SpaceX lander would aim for nearly double Blue Moon’s 6.5t payload capability, delivering as much as 12t (26,500 lb) to the surface of the Moon. That payload could either enable an unprecedentedly large crew capsule/ascent vehicle or permit the delivery of truly massive robotic or cargo payloads. Additionally, SpaceX believes that a descent stage with the aforementioned capabilities could potentially double as an excellent orbital transfer stage, refueling tug, and more. The lander would also serve as a full-up testbed for all the advanced technologies SpaceX needs to enable its goals of sustainable, reliable, and affordable solar system colonization.


Time will tell if NASA is actually serious about upsetting the status quo and getting to the Moon quickly and affordably, or if they will instead fall back on well-worn habits shown to minimize results and maximize cost. The White House recently proposed an additional $1.6B be added to NASA’s FY2020 budget, inexplicably choosing to take those funds from the federal Pell Grant system, which helps more than five million underprivileged Americans afford higher education. Regardless of the sheer political ineptitude involved in the proposed funding increase, even $1.6B annually (the WH proposal is for one year only) would be a pittance in the face of the spectacular inefficiencies of usual contractors Boeing and Lockheed Martin.
The telltale sign of which direction NASA’s lunar ambitions are headed will come when the agency begins to award actual development and hardware production contracts to one or several of the proposals to be studied. Stay tuned!
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla expands crucial Supercharging feature for easier access
It is a useful tool, especially during hours of congestion. However, it has not been super effective for those who drive non-Tesla EVs, as other OEMs use UI platforms like Google’s Android Auto or Apple’s iOS.
Tesla has expanded a crucial Supercharging feature that helps owners identify stall availability at nearby locations.
Tesla said on Tuesday night that its “Live Availability” feature, which shows EV owners how many stalls are available at a Supercharger station, to Google Maps, a third-party app:
Live availability of Superchargers now in Google Maps pic.twitter.com/DJvS83wVxm
— Tesla Charging (@TeslaCharging) November 11, 2025
Already offering it in its own vehicles, the Live Availability feature that Teslas have is a helpful feature that helps you choose an appropriate station with plugs that are immediately available.
A number on an icon where the Supercharger is located lets EV drivers know how many stalls are available.
It is a useful tool, especially during hours of congestion. However, it has not been super effective for those who drive non-Tesla EVs, as other OEMs use UI platforms like Google’s Android Auto or Apple’s iOS.
Essentially, when those drivers needed to charge at a Supercharger that enables non-Tesla EVs to plug in, there was a bit more of a gamble. There was no guarantee that a plug would be available, and with no way to see how many are open, it was a risk.
Tesla adding this feature allows people to have a more convenient and easier-to-use experience if they are in a non-Tesla EV. With the already expansive Supercharger Network being available to so many EV owners, there is more congestion than ever.
This new feature makes the entire experience better for all owners, especially as there is more transparency regarding the availability of plugs at Supercharger stalls.
It will be interesting to see if Tesla is able to expand on this new move, as Apple Maps compatibility is an obvious goal of the company’s in the future, we could imagine. In fact, this is one of the first times an Android Auto feature is available to those owners before it became an option for iOS users.
Apple owners tend to get priority with new features within the Tesla App itself.
Elon Musk
Elon Musk’s Boring Co goes extra hard in Nashville with first rock-crushing TBM
The Boring Company’s machine for the project is now in final testing.
The Boring Company is gearing up to tackle one of its toughest projects yet, a new tunnel system beneath Nashville’s notoriously tough limestone terrain. Unlike the soft-soil conditions of Las Vegas and Austin, the Music City Loop will require a “hard-rock” boring machine capable of drilling through dense, erosion-resistant bedrock.
The Boring Company’s machine for the project is now in final testing.
A boring hard-rock tunneling machine
The Boring Company revealed on X that its new hard-rock TBM can generate up to 4 million pounds of grip force and 1.5 million pounds of maximum thrust load. It also features a 15-filter dust removal system designed to keep operations clean and efficient during excavation even in places where hard rock is present.
Previous Boring Co. projects, including its Loop tunnels in Las Vegas, Austin, and Bastrop, were dug primarily through soft soils. Nashville’s geology, however, poses a different challenge. Boring Company CEO and President Steve Davis mentioned this challenge during the project’s announcement in late July.
“It’s a tough place to tunnel, Nashville. If we were optimizing for the easiest places to tunnel, it would not be here. You have extremely hard rock, like way harder than it should be. It’s an engineering problem that’s fairly easy and straightforward to solve,” Davis said.
Nashville’s limestone terrain
Experts have stated that the city’s subsurface conditions make it one of the more complex tunneling environments in the U.S. The Outer Nashville Basin is composed of cherty Mississippian-age limestone, a strong yet soluble rock that can dissolve over time, creating underground voids and caves, as noted in a report from The Tennessean.
Jakob Walter, the founder and principal engineer of Haushepherd, shared his thoughts on these challenges. “Limestone is generally a stable sedimentary bedrock material with strength parameters that are favorable for tunneling. Limestone is however fairly soluble when compared to other rack materials, and can dissolve over long periods of time when exposed to water.
“Unexpected encounters with these features while tunneling can result in significant construction delays and potential instability of the excavation. In urban locations, structures at the ground surface should also be constantly monitored with robotic total stations or similar surveying equipment to identify any early signs of movement or distress,” he said.
Elon Musk
Elon Musk shares ridiculous fact about Optimus’ hand demos
It appears that Optimus’ V3 iteration is still very much under wraps.
Elon Musk recently revealed something quite shocking about the Optimus demonstration hand that was showcased at the 2025 Annual Shareholder Meeting. As per the CEO, the complex robotic hand that impressed the event’s attendees was not a component of Optimus V3 at all.
Needless to say, it appears that Optimus’ V3 iteration is still very much under wraps.
Optimus’s hand
Even in Tesla’s We, Robot event last year, the company showcased a robotic hand that seemed capable of performing complex tasks. A similar hand was showcased at the recent investor event. It was then no surprise that some attendees and EV community members assumed that the robotic component, which was very dexterous, was a preview of Optimus V3’s hand.
As per Elon Musk in a recent post on X, however, this was not the case. While the robotic hand that Tesla showcased at the 2025 Annual Shareholder Meeting was already very impressive, it was still a V2 component. In response to a quote post from his mom Maye Musk, who noted that “Elon told me a few times that the hand is the most difficult part of the robot,” Elon Musk clarified that the impressive component was still from Optimus V2.
“This is just the V2 Optimus hand. The V3 hand is another level beyond this. Exquisite engineering,” Musk wrote in his post on X.
Not like Tesla
Tesla is designing Optimus to be a potential replacement for humans in some of the world’s most delicate tasks, such as surgery. It is then extremely important for Optimus’ hand to be very dexterous and refined in its movements. This is something that even companies that are also producing humanoid robots have yet to accomplish fully. Musk highlighted this during the Annual Shareholder Meeting, when he discussed how Tesla is really the only company that can scale humanoid robots properly.
“You will see certainly many companies showing demonstration robots. There’s really three things that are super difficult about robots. One is the engineering of the forearm and hand because the human hand is an incredible thing, actually. It’s super dexterous.
“So, engineering the hand really well, the real-world AI, and then volume manufacturing. Those are generally the things that are missing. One or more of those things are missing from other companies. So Tesla is the only one that has all three of those,” Musk said.
-
News5 days agoTesla shares rare peek at Semi factory’s interior
-
Elon Musk5 days agoTesla says texting and driving capability is coming ‘in a month or two’
-
News4 days agoTesla makes online ordering even easier
-
News4 days agoTesla Model Y Performance set for new market entrance in Q1
-
News5 days agoTesla Cybercab production starts Q2 2026, Elon Musk confirms
-
News5 days agoTesla China expecting full FSD approval in Q1 2026: Elon Musk
-
News6 days agoTesla Model Y Performance is rapidly moving toward customer deliveries
-
News3 days agoTesla is launching a crazy new Rental program with cheap daily rates
