News
SpaceX’s backup Dragon launch pad on track for 2023 debut
SpaceX has begun building a backup launch pad for its Cargo and Crew Dragon spacecraft and says the facility could be ready for use as early as fall 2023.
Reuters first revealed those plans in June 2022. They arose because NASA reportedly told SpaceX it was worried that the company’s first Florida Starship launch site – colocated at the only pad currently able to launch SpaceX Dragon spacecraft – could add too much risk. In September 2022, NASA and SpaceX acknowledged plans to modify LC-40 for Dragon launches and indicated that both parties had decided to proceed.
Four months later, SpaceX and NASA have provided another press conference update. Officials confirmed that construction is already partially underway and reported that LC-40 could be ready to support its first Dragon launch less than a year from now.
The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air— Wes (@wmorrill3) April 16, 2024
Because Boeing’s comparable Starliner capsule is years behind schedule and still unqualified to launch humans, NASA has relied almost exclusively on SpaceX’s Crew Dragon to launch its astronauts to the International Space Station (ISS) since 2020. Starliner should be ready to supplement Crew Dragon’s operational astronaut launches by the end of 2023 or early 2024, alleviating some of that pressure.
NASA, however, chose to develop two spacecraft to guarantee that one spacecraft would likely be available if the other was grounded for any reason. Adding the possibility that a giant, new, experimental rocket (Starship) could potentially halt all SpaceX Dragon launches in one fell swoop was apparently one bridge too many for the agency.

SpaceX’s answer to the problem was about as simple, elegant, and cheap as possible. The company has two operational Falcon launch pads in Florida, and it proposed to modify the second pad. SpaceX’s Cape Canaveral Space Force Station (CCSFS) LC-40 pad is located on a secure military base and has an even longer history of successful Falcon 9 launches than Pad 39A. It also appears that its layout will allow SpaceX to add a Dragon access tower without requiring major redesigns or months of downtime.
LC-40 is SpaceX’s most productive launch pad by far, and the company intends to launch up to 100 times in 2023. It’s thus crucial that the pad remains as active as possible as it’s modified – a major challenge. A combination of luck and the fact that the launch pad is already operational is the only reason that’s possible.
Modifying SpaceX’s busiest pad
In theory, SpaceX needs to do relatively little to enable Dragon launches out of LC-40. Dragon spacecraft are processed for flight at a separate facility and only head to the pad once they’re ready to be attached to a Falcon 9 rocket. The biggest modification LC-40 needs is a launch tower, but SpaceX ironically has experience building giant towers in sections – and offsite – through Starship.
LC-40’s Dragon access tower requires far less complex plumbing and should be smaller and easier to prefabricate and assemble. Regulatory documents indicate that the new tower will stand 81 meters (265 feet) tall – almost a third shorter than the 110-meter-tall tower SpaceX modified at Pad 39A for the same purpose. LC-40 will also need a swinging access arm to connect the tower to Dragon’s hatch. That arm can also be constructed offsite, further reducing the amount of downtime required.

The most disruptive modifications may involve LC-40’s transporter/erector (T/E) device, which rolls Falcon 9 out to the pad, raises it vertical, holds it down with giant clamps; and hosts a maze of plumbing that fuels, pressurizes, and powers the rocket. The top of LC-40’s T/E is fitted with a brace designed to support Falcon payload fairings. In comparison, 39A’s T/E was designed with swappable ‘heads’ that allow SpaceX to switch between Dragon and fairing configurations in a matter of days. The top of LC-40’s T/E also appears to be somewhat removable, but SpaceX may still have to halt launches for a few weeks to get the T/E up to spec and modified for Dragon.
SpaceX says that LC-40 will be ready to support its first Dragon launch as early as fall (Q4) 2023. Its first Dragon mission will carry cargo to the ISS, meaning that the tower, arm, and pad will not need to be immediately human-rated. In theory, SpaceX could even launch Cargo Dragon 2 from LC-40 without a tower or arm, as the only purpose of the tower during uncrewed missions is to load volatile cargo at the last possible second. SpaceX could even revert to a practice that dates back to its original Dragon 1 spacecraft and devise a method to late-load cargo while Falcon 9 and Dragon are still horizontal.

The tower and access arm are only essential for Crew Dragon launches, during which astronauts must board the spacecraft a few hours before liftoff. More importantly, the same arm and tower would be used to escape Dragon and Falcon 9 in case of a minor emergency. NASA requires an escape (egress) system to human-rate a launch pad and rocket. SpaceX met that requirement at Pad 39A with a “slidewire basket” system that carries astronauts to a concrete bunker several hundred feet away from the rocket. Before LC-40 can be human-rated, SpaceX will likely need to build the same basket-and-bunker system or come up with a viable alternative.
Once complete, SpaceX will have two pads capable of supporting all Crew and Cargo Dragon launches. With that redundancy in place, NASA should be far more open to regular launches of SpaceX’s next-generation Starship rocket out of Pad 39A. Access to multiple pads will likely be essential for Starship to complete NASA’s Human Landing System (HLS) contracts, which will culminate in the giant rocket sending humans back to the Moon for the first (and second) time in half a century in the mid-to-late-2020s.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.