Connect with us

News

Supercapacitor breakthrough suggests EVs could charge in seconds but with a trade-off

Published

on

Supercapacitors may be providing an alternative to electric-car batteries sooner than expected, according to a new research study. Currently, supercapacitors can charge and discharge rapidly over very large numbers of cycles, but their poor energy density per kilogram —- at just one twentieth of existing battery technology — means that they can’t compete with batteries in most applications.

That’s about to change, say researchers from the University of Surrey and University of Bristol in conjunction with Augmented Optics. They have announced a breakthrough in supercapacitors, which are said to be between 1000 and 10,000 times more powerful than equivalent lithium-ion batteries and considerably quicker to recharge. However, they lack the storage capacity found in traditional automotive-grade lithium-ion batteries used in today’s electric cars. But Jim Heathcote, chief executive of Augmented Optics Ltd and Supercapacitor Materials Ltd, says consumers would likely still be happy with the trade off by having faster charging times. “A lot of people would be more happy with a half the range of a 300-mile, lithium ion-batteried EV, but a fast charging time”. If their research can be translated into the consumer market, EVs could re-charge in a time quicker than filling a vehicle with a tank of gasoline.

Tesla CEO Elon Musk has remarked in the past about the use of supercapcitors in electric vehicles, “If I were to make a prediction, I’d think there’s a good chance that it is not batteries, but super-capacitors.” The recent research could be a first sign that Musk’s prediction from five years ago could one day come to fruition.

Why a combination of batteries and supercapacitors is essential to a sustainable future

In the next few decades, fossil-fueled cars and home-heating systems will need to switch to electric power to avert catastrophic climate change. Electricity has tremendous benefits but also one significant drawback: it’s relatively difficult to store in a hurry. Batteries can hold large amounts of energy, but they take hours to charge. Capacitors are a solution to this dilemma, as they charge nearly instantaneously.

A supercapacitor solves the problem of storing a reasonable amount of energy for a relatively short period of time. Supercapacitors have been typically used as energy reservoirs to stabilize power supplies to electrical and electronic equipment. But supercapacitors can also be connected to batteries to regulate the power they supply. However, up until this point, they have only been able to store minuscule amounts of energy.

To truly have a feasible electric-powered lifestyle in which we can store and release large amounts of energy very quickly, we need efficiency in both batteries and supercapacitors. Supercapacitors help to solve the “energy versus power” conundrum. “Energy” is the capacity to do work. In physics, work is the act of exerting a force over a distance. While energy measures the total quantity of work done, it doesn’t say how fast you can get the work done. “Power” is the rate of producing or consuming energy. Supercapacitors can bridge that divide and solve the inherent trade-off between EV energy and power.

Dr. Brendan Howlin of the University of Surrey said: “There is a global search for new energy storage technology and this new ultra-capacity supercapacitor has the potential to open the door to unimaginably exciting developments.”

They hope to have a working prototype by spring 2017. “We are now actively seeking commercial partners in order to supply our polymers and offer assistance to build these ultra-high-energy density storage devices,” said Heathcote. In current form, the high energy density supercapacitors could make it possible to recharge mobile phones, laptops, or other mobile devices in just a few seconds.

Advertisement

A fleet of supercapacitor-equipped buses is already in use in China, although they do not achieve the range proposed by the Surrey research team.

Shout out to Chris Woodford for background info.

Carolyn Fortuna is a writer and researcher with a Ph.D. in education from the University of Rhode Island. She brings a social justice perspective to environmental issues. Please follow me on Twitter and Facebook and Google+

Advertisement
Comments

Elon Musk

SpaceX Starship V3 gets launch date update from Elon Musk

The first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.

Published

on

Credit: SpaceX/X

Elon Musk has announced that SpaceX’s next Starship launch, Flight 12, is expected in about six weeks. This suggests that the first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.

In a post on X, Elon Musk stated that the next Starship launch is in six weeks. He accompanied his announcement with a photo that seemed to have been taken when Starship’s upper stage was just about to separate from the Super Heavy Booster. Musk did not state whether SpaceX will attempt to catch the Super Heavy Booster during the upcoming flight.

The upcoming flight will mark the debut of Starship V3. The upgraded design includes the new Raptor V3 engine, which is expected to have nearly twice the thrust of the original Raptor 1, at a fraction of the cost and with significantly reduced weight. The Starship V3 platform is also expected to be optimized for manufacturability. 

The Starship V3 Flight 12 launch timeline comes as SpaceX pursues an aggressive development cadence for the fully reusable launch system. Previous iterations of Starship have racked up a mixed but notable string of test flights, including multiple integrated flight tests in 2025.

Interestingly enough, SpaceX has teased an aggressive timeframe for Starship V3’s first flight. Way back in late November, SpaceX noted on X that it will be aiming to launch Starship V3’s maiden flight in the first quarter of 2026. This was despite setbacks like a structural anomaly on the first V3 booster during ground testing.

“Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X. 

Continue Reading

News

Tesla China rolls out Model 3 insurance subsidy through February

Eligible customers purchasing a Model 3 by February 28 can receive an insurance subsidy worth RMB 8,000 (about $1,150).

Published

on

Credit: Tesla Malaysia/X

Tesla has rolled out a new insurance subsidy for Model 3 buyers in China, adding another incentive as the automaker steps up promotions in the world’s largest electric vehicle market.

Eligible customers purchasing a Model 3 by February 28 can receive an insurance subsidy worth RMB 8,000 (about $1,150).

A limited-time subsidy

The insurance subsidy, which was announced by Tesla China on Weibo, applies to the Model 3 RWD, Long Range RWD, and Long Range AWD variants. Tesla stated that the offer is available to buyers who complete their purchase on or before February 28, as noted in a CNEV Post report. The starting prices for these variants are RMB 235,500, RMB 259,500, and RMB 285,500, respectively.

The Tesla Model 3 Performance, which starts at RMB 339,500, is excluded from the subsidy. The company has previously used insurance incentives at the beginning of the year to address softer seasonal demand in China’s auto market. The program is typically phased out as sales conditions stabilize over the year.

https://twitter.com/tslaming/status/2015608966206890016?s=20

China’s electric vehicle market

The insurance subsidy followed Tesla’s launch of a 7-year low-interest financing plan in China on January 6, which is aimed at improving vehicle affordability amid changing policy conditions. After Tesla introduced the financing program, several automakers, such as Xiaomi, Li Auto, Xpeng, and Voyah, introduced similar long-term financing options.

China’s electric vehicle market has faced additional headwinds entering 2026. Buyers of new energy vehicles are now subject to a 5% purchase tax, compared with the previous full exemption. At the same time, vehicle trade-in subsidies in several cities are expected to expire in mid-November.

Tesla’s overall sales in China declined in 2025, with deliveries totaling 625,698 vehicles, down 4.78% year-over-year. Model 3 deliveries increased 13.33% to 200,361 units, while Model Y deliveries, which were hampered by the changeover to the new Model Y in the first quarter, fell 11.45% to 425,337 units.

Continue Reading

News

Tesla hiring Body Fit Technicians for Cybercab’s end of line

As per Tesla’s Careers website, Body Fit Technicians for the Cybercab focus on precision body fitment work, including alignment, gap and flush adjustments.

Published

on

Credit: Tesla/X

Tesla has posted job openings for Body Fit Technicians for the Cybercab’s end-of-line assembly, an apparent indication that preparations for the vehicle’s initial production are accelerating at Giga Texas. 

Body Fit Technicians for Cybercab line

As per Tesla’s Careers website, Body Fit Technicians for the Cybercab focus on precision body fitment work, including alignment, gap and flush adjustments, and certification of body assemblies to specification standards. 

Employees selected for the role will collaborate with engineering and quality teams to diagnose and correct fitment and performance issues and handle detailed inspections, among other tasks.

The listing noted that candidates should be experienced with automotive body fit techniques and comfortable with physically demanding tasks such as lifting, bending, walking, and using both hand and power tools. The position is based in Austin, Texas, where Tesla’s main Cybercab production infrastructure is being built.

Cybercab poised for April production

Tesla CEO Elon Musk recently reiterated that the Cybercab is still expected to start initial production this coming April. So far, numerous Cybercab test units have been spotted across the United States, and recent posts from the official Tesla Robotaxi account have revealed that winter tests in Alaska for the autonomous two-seater are underway. 

While April has been confirmed as the date for the Cybercab’s initial production, Elon Musk has also set expectations about the vehicle’s volumes in its initial months. As per the CEO, the Cybercab’s production will follow a typical S-curve, which means that early production rates for the vehicle will be very limited. 

“Initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast,” Musk wrote in a post on X.

Continue Reading