Connect with us
tesla-battery-lithium-refining-facility-nueces tesla-battery-lithium-refining-facility-nueces

News

Tesla supplier sheds light on graphite supply challenge for EV battery manufacturers [Editorial]

(Credit: Tesla)

Published

on

Graphite is an essential part of a lithium-ion battery. There are many challenges that EV battery manufacturers might face in the graphite market as electric vehicle demand continues to rise.

Graphite is often an overlooked essential mineral when people think of EV batteries. However, it is a crucial component in the anodes of lithium-ion batteries used in electric vehicles. 

Graphite and Transparency

The chief executive of Syrah Resources, Shaun Verner, shared a bit about graphite pricing and funding for new projects. Syrah Resources is an Australian company that supplies Tesla from its mine in Mozambique, one of the largest graphite producers. 

Verner commented that the graphite market lacks transparency when it comes to pricing, leading bankers to hesitate when it comes to funding new graphite-related projects. 

Advertisement

Only a handful of countries mine graphite and even fewer refine the mineral enough to be used in batteries and other products. With few producers in the graphite industry, graphite consumers enter into long-term bilateral supply agreements with little transparency on prices. In addition, relatively few analysts follow the graphite industry, making it difficult to get any long-term forecasts on graphite prices.

“The single biggest impediment to new investment is the opaque nature of the market because to get the commercial debt in place is really challenging,” said Verner.

Graphite Supply

Graphite prices have declined in recent months compared to the highs in early 2022. Fastmarkets reported that traditional graphite applications have decreased this year, resulting in “sluggish” conditions in the market.  However, graphite demand is expected to rise in the next few years due to growth in the electric vehicle sector. 

“Graphite has kind of been the poor cousin of the battery minerals and doesn’t get the attention of the other commodities,” commented Gregory Bowes, executive chairman of the Northern Graphite Corporation. “But we’re getting very close to an inflection point where demand overtakes supply and this is going to be first page news.”

Advertisement

Experts observing the graphite market expect graphite supply to hit a deficit as EV battery makers increase production. Fastmarkets estimates that natural graphite consumption would rise 40% year on year, on par with the EV sector. Benchmark Mineral Intelligence had the same forecast and calculated that graphite supply would hit a deficit of 20,000 tons in 2022.

China’s dominance in the graphite industry factors into the forecasted deficit since it dominates the graphite market. In 2021, China produced 820,000 metric tons (MT) of graphite, a significant increase compared to the previous two years. The US Geological Survey reported that China accounted for 79% of the world’s graphite mining last year. The country’s quick recovery from COVID-19 shutdowns contributed to its dominance in 2021. 

“Chinese producers quickly increased production after a few months of closures in 2020. This allowed China to gain a more dominant position in the market for 2021 and slowed down the diversification of the supply chain,” noted the US Geological Survey’s report. 

After China, Brazil and Mozambique are the next largest graphite producers. Brazil produced 68,000 MT last year, while Mozambique’s output was 30,000 MT. Russia, Madagascar, Ukraine, Norway, Canada, India, and Sri Lanka make up the remaining Top 10 countries that produce graphite.

Graphite and the Inflation Reduction Act

The graphite industry might be a major challenge for automakers seeking to launch their products in the United States over the next few years. The recently passed Inflation Reduction Act included EV tax credits that could go as high as $7,500 for automakers that adhere to a few specific requirements.

Advertisement

One of the requirements to qualify for the EV tax credit is related to batteries and the minerals used to make them. According to the Inflation Reduction Act, at least 40% of the critical minerals used to make US-made EV batteries must also come from US miners or recycling plants. Automakers can also qualify for the tax credit if the minerals used in their US-made batteries come from countries with free trade deals with the United States.

In 2021, natural graphite was not produced in the United States, but it consumed 45,000 tons of the mineral, estimated to be worth $41 million. The United States imported about 53,000 tons of graphite last year, mainly from China. It also imported graphite from Mexico, Canada, India, and other sources. 

US Geological Survey mentioned one US automaker in its report about graphite imports. It did not mention the automaker by name.

“A US automaker continued building a large plant to manufacture lithium-ion electric vehicle batteries. The completed portion of the plant was operational, and it produced battery cells, battery packs, drive units, and energy storage products. At full capacity, the plant was expected to require 35,200 tons per year of spherical graphite for use as anode material for lithium-ion batteries,” stated the report.

Eric Desaulniers, the chief executive of Nouveau Monde Graphite, stated that discussions with cell manufacturers have ramped up after the Inflation Reduction Act was passed. Nouveau Monde is currently developing a graphite mine and battery-grade anode plant in Canada. 

Advertisement

Desaulniers noted that challenges are ahead when it comes to securing project financing since “cell makers are cash-constrained.” He also noted that automakers had their hands full from scaling up their respective battery manufacturing facilities. 

Tesla, considered the lead electric vehicle manufacturer in the United States, is already producing its 4680 battery cells in California. Rivian, General Motors, and other automakers also plan to develop their own battery cells in their own battery manufacturing plants. 

The Teslarati team would appreciate hearing from you. If you have any tips, contact me at maria@teslarati.com or via Twitter @Writer_01001101.

Advertisement

Maria--aka "M"-- is an experienced writer and book editor. She's written about several topics including health, tech, and politics. As a book editor, she's worked with authors who write Sci-Fi, Romance, and Dark Fantasy. M loves hearing from TESLARATI readers. If you have any tips or article ideas, contact her at maria@teslarati.com or via X, @Writer_01001101.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading