News
Tesla supplier sheds light on graphite supply challenge for EV battery manufacturers [Editorial]
Graphite is an essential part of a lithium-ion battery. There are many challenges that EV battery manufacturers might face in the graphite market as electric vehicle demand continues to rise.
Graphite is often an overlooked essential mineral when people think of EV batteries. However, it is a crucial component in the anodes of lithium-ion batteries used in electric vehicles.
Graphite and Transparency
The chief executive of Syrah Resources, Shaun Verner, shared a bit about graphite pricing and funding for new projects. Syrah Resources is an Australian company that supplies Tesla from its mine in Mozambique, one of the largest graphite producers.
Verner commented that the graphite market lacks transparency when it comes to pricing, leading bankers to hesitate when it comes to funding new graphite-related projects.
Only a handful of countries mine graphite and even fewer refine the mineral enough to be used in batteries and other products. With few producers in the graphite industry, graphite consumers enter into long-term bilateral supply agreements with little transparency on prices. In addition, relatively few analysts follow the graphite industry, making it difficult to get any long-term forecasts on graphite prices.
“The single biggest impediment to new investment is the opaque nature of the market because to get the commercial debt in place is really challenging,” said Verner.
Graphite Supply
Graphite prices have declined in recent months compared to the highs in early 2022. Fastmarkets reported that traditional graphite applications have decreased this year, resulting in “sluggish” conditions in the market. However, graphite demand is expected to rise in the next few years due to growth in the electric vehicle sector.
“Graphite has kind of been the poor cousin of the battery minerals and doesn’t get the attention of the other commodities,” commented Gregory Bowes, executive chairman of the Northern Graphite Corporation. “But we’re getting very close to an inflection point where demand overtakes supply and this is going to be first page news.”
Experts observing the graphite market expect graphite supply to hit a deficit as EV battery makers increase production. Fastmarkets estimates that natural graphite consumption would rise 40% year on year, on par with the EV sector. Benchmark Mineral Intelligence had the same forecast and calculated that graphite supply would hit a deficit of 20,000 tons in 2022.
China’s dominance in the graphite industry factors into the forecasted deficit since it dominates the graphite market. In 2021, China produced 820,000 metric tons (MT) of graphite, a significant increase compared to the previous two years. The US Geological Survey reported that China accounted for 79% of the world’s graphite mining last year. The country’s quick recovery from COVID-19 shutdowns contributed to its dominance in 2021.
“Chinese producers quickly increased production after a few months of closures in 2020. This allowed China to gain a more dominant position in the market for 2021 and slowed down the diversification of the supply chain,” noted the US Geological Survey’s report.
After China, Brazil and Mozambique are the next largest graphite producers. Brazil produced 68,000 MT last year, while Mozambique’s output was 30,000 MT. Russia, Madagascar, Ukraine, Norway, Canada, India, and Sri Lanka make up the remaining Top 10 countries that produce graphite.
Graphite and the Inflation Reduction Act
The graphite industry might be a major challenge for automakers seeking to launch their products in the United States over the next few years. The recently passed Inflation Reduction Act included EV tax credits that could go as high as $7,500 for automakers that adhere to a few specific requirements.
One of the requirements to qualify for the EV tax credit is related to batteries and the minerals used to make them. According to the Inflation Reduction Act, at least 40% of the critical minerals used to make US-made EV batteries must also come from US miners or recycling plants. Automakers can also qualify for the tax credit if the minerals used in their US-made batteries come from countries with free trade deals with the United States.
In 2021, natural graphite was not produced in the United States, but it consumed 45,000 tons of the mineral, estimated to be worth $41 million. The United States imported about 53,000 tons of graphite last year, mainly from China. It also imported graphite from Mexico, Canada, India, and other sources.
US Geological Survey mentioned one US automaker in its report about graphite imports. It did not mention the automaker by name.
“A US automaker continued building a large plant to manufacture lithium-ion electric vehicle batteries. The completed portion of the plant was operational, and it produced battery cells, battery packs, drive units, and energy storage products. At full capacity, the plant was expected to require 35,200 tons per year of spherical graphite for use as anode material for lithium-ion batteries,” stated the report.
Eric Desaulniers, the chief executive of Nouveau Monde Graphite, stated that discussions with cell manufacturers have ramped up after the Inflation Reduction Act was passed. Nouveau Monde is currently developing a graphite mine and battery-grade anode plant in Canada.
Desaulniers noted that challenges are ahead when it comes to securing project financing since “cell makers are cash-constrained.” He also noted that automakers had their hands full from scaling up their respective battery manufacturing facilities.
Tesla, considered the lead electric vehicle manufacturer in the United States, is already producing its 4680 battery cells in California. Rivian, General Motors, and other automakers also plan to develop their own battery cells in their own battery manufacturing plants.
The Teslarati team would appreciate hearing from you. If you have any tips, contact me at maria@teslarati.com or via Twitter @Writer_01001101.
News
SpaceX reaches incredible milestone with Starlink program
SpaceX reached an incredible milestone with its Starlink program with a launch last night, as the 3,000th satellite of the year was launched into low Earth orbit.
On Monday, SpaceX also achieved its 32nd flight with a single Falcon 9 rocket from NASA’s Kennedy Space Center.
The mission was Starlink 6-92, and it utilized the Falcon 9 B1067 for the 32nd time this year, the most-used Falcon booster. The flight delivered SpaceX’s 3000th Starlink satellite of the year, a massive achievement.
There were 29 Starlink satellites launched and deployed into LEO during this particular mission:
Falcon 9 launches 29 @Starlink satellites from Florida pic.twitter.com/utKrXjHzPN
— SpaceX (@SpaceX) December 9, 2025
SpaceX has a current goal of certifying its Falcon boosters for 40 missions apiece, according to Spaceflight Now.
The flight was the 350th orbital launch from the nearby SLC-40, and the 3,000 satellites that have been successfully launched this year continue to contribute to the company’s goal of having 12,000 satellites contributing to global internet coverage.
There are over five million users of Starlink, the latest data shows.
Following the launch and stage separation, the Falcon 9 booster completed its mission with a perfect landing on the ‘Just Read the Instructions’ droneship.
The mission was the 575th overall Falcon 9 launch, highlighting SpaceX’s operational tempo, which continues to be accelerated. The company averages two missions per week, and underscores CEO Elon Musk’s vision of a multi-planetary future, where reliable connectivity is crucial for remote work, education, and emergency response.
As Starlink expands and works toward that elusive and crucial 12,000 satellite goal, missions like 6-92 pave the way for innovations in telecommunications and enable more internet access to people across the globe.
With regulatory approvals in over 100 countries and millions of current subscribers, SpaceX continues to democratize space, proving that reusability is not just feasible, but it’s also revolutionary.
News
Tesla expands new Full Self-Driving program in Europe
Tesla expanded its new Full Self-Driving program, which gives people the opportunity to experience the company’s suite, in Europe.
Tesla recently launched an opportunity for Europeans to experience Full Self-Driving, not in their personal vehicles, but through a new ride-along program that initially launched in Italy, France, and Germany back in late November.
People could experience it by booking a reservation with a local Tesla showroom, but timeslots quickly filled up, making it difficult to keep up with demand. Tesla expanded the program and offered some additional times, but it also had its sights set on getting the program out to new markets.
It finally achieved that on December 9, as it launched rides in Denmark and Switzerland, adding the fourth and fifth countries to the program.
Tesla confirmed the arrival of the program to Denmark and Switzerland on X:
Now available in Denmark & Switzerland
🇩🇰 https://t.co/IpCSwHO566 https://t.co/V2N5EarLNX
— Tesla Europe & Middle East (@teslaeurope) December 9, 2025
The program, while a major contributor to Tesla’s butts in seats strategy, is truly another way for the company to leverage its fans in an effort to work through the regulatory hurdles it is facing in Europe.
Tesla has faced significant red tape in the region, and although it has tested the FSD suite and been able to launch this ride-along program, it is still having some tremendous issues convincing regulatory agencies to allow it to give it to customers.
CEO Elon Musk has worked with regulators, but admitted the process has been “insanely painful.”
The most recent development with FSD and its potential use in Europe dealt with the Dutch approval authority, known as the RDW.
Tesla says Europe could finally get FSD in 2026, and Dutch regulator RDW is key
Tesla said it believes some regulations are “outdated and rules-based,” which makes the suite ineligible for use in the European jurisdiction.
The RDW is working with Tesla to gain approval sometime early next year, but there are no guarantees. However, Tesla’s angle with the ride-along program seems to be that if it can push consumers to experience it and have a positive time, it should be easier for it to gain its footing across Europe with regulatory agencies.
News
Tesla ramps hiring for Roadster as latest unveiling approaches
Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering.
Tesla is ramping up hiring for positions related to the Roadster program, the company’s ultra-fast supercar that has been teased to potentially hover by CEO Elon Musk.
The company seems to be crossing off its last handful of things before it plans to unveil the vehicle on April Fool’s Day, just about four months away.
Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering. All three are located in Northern California, with two being at the Fremont Factory and the other at the company’s Engineering HQ in Palo Alto.
Technical Program Manager, Battery Manufacturing
Located in Fremont, this role specifically caters to the design of the Roadster to factory operations. It appears this role will mostly have to do with developing and engineering the Roadster’s battery pack and establishing the production processes for it:
“You will foster collaboration across design engineering, manufacturing, quality, facilities, and production to align with company priorities. Additionally, you will understand project opportunities, challenges, and dependencies; translate scattered information into concise, complete messages; and communicate them to every team member. As the business process development lead, you will develop, maintain, and implement tools and processes to accelerate battery manufacturing execution, achieve cross-functional alignment, and deliver highly efficient systems.”
Manufacturing Engineer, Roadster
Also located in Fremont, this role also has to deal with the concept development and launch of battery manufacturing equipment. Tesla says:
“In this role, you will take large-scale manufacturing systems for new battery products and architectures from the early concept development stage through equipment launch, optimization, and handover to local operations teams.”
Manufacturing Vision Engineer, Battery Vision
This position is in Palo Alto at Tesla’s Engineering Headquarters, and requires the design and scale of advanced inspection and control systems to next-generation battery products:
“You’ll work on automation processes that directly improve battery performance, quality, and cost, collaborating with world-class engineers in a fast-paced, hands-on environment.”
Developing and deploying 2D and 3D vision and measurement systems from proof-of-concept to deployment on high-volume battery manufacturing lines is part of the job description.
Roadster Unveiling
Tesla plans to unveil the Roadster on April 1, and although it was planned for late this year, it is nice to see the company put out a definitive date.
Musk said on the Joe Rogan Experience Podcast in late October:
“Whether it’s good or bad, it will be unforgettable. My friend Peter Thiel once reflected that the future was supposed to have flying cars, but we don’t have flying cars. I think if Peter wants a flying car, he should be able to buy one…I think it has a shot at being the most memorable product unveil ever.”
Production should begin between 12 to 18 months after unveiling, so we could see it sometime in 2027.