Connect with us

News

Tesla proudly hides ‘Octovalve’ insignia in Model Y, hints at next-gen thermal system

(Credit: Munrolive.com)

Published

on

A number of the Tesla Model Y’s secrets are now coming to the surface, as auto veteran and teardown expert Sandy Munro continues his disassembly and analysis of the all-electric crossover. Among the most noteworthy of these secrets is the vehicle’s “Octovalve,” which could very well be an upgraded version of the Model 3’s unique “Superbottle,” which serves as the heart of the all-electric sedan’s thermal management system.

The Model 3 broke all conventions when it became evident that instead of using a different cooling system for the vehicle’s battery pack, cabin, and electronics, the all-electric sedan used one compact centralized thermal management system. Traditional automakers usually install several cooling systems in a car, since components are outsourced to different companies. Tesla opted for a different strategy with the Model 3, thanks to its vertically-integrated approach to its vehicles’ design.

The Tesla Model Y’s Octovalve. (Credit: Munrolive.com)

Based on recent photographs taken by auto teardown expert Sandy Munro, the Model Y is also equipped with a novel thermal management system. But instead of a Superbottle, Tesla appears to have provided its latest vehicle with an “Octovalve” instead. Munro is yet to tear down and analyze the Octovalve, but just like its predecessor, it seems to be the heart of the Model Y’s cooling and heating system.

Interestingly enough, the use of the Octovalve instead of the Superbottle in the Model Y may be due to the all-electric crossover’s heat pump. Prior Teslas like the Model S, Model 3, and Model X have used electronic resistive heating systems, which are quick but less efficient than heat pumps.

The Tesla Model Y’s Octovalve. (Credit: Munrolive.com)

This is speculation of course, but it appears that the Octovalve may be a novel way for Tesla to combine all heating and cooling systems in the Model Y in one unit. To make this possible, Tesla needed a customized, smart valve system that can perform all the cooling and heating tasks for the Model Y. Based on Munro’s previews, this definitely seems to be the case, as hinted at by the Octovalve’s own badge — an octopus with a snowflake on its head.

Elon Musk has mentioned the Octovalve in a previous tweet, while responding to a Tesla community member who inquired if the Model Y had a solution that is better than the Superbottle. Musk noted in his tweet that the Octovalve is pretty special on its own right, though he was quick to emphasize that all credit for the creation of the system is to the Tesla team, not himself.

Advertisement

“Yes. PCB design techniques applied to create a heat exchanger that is physically impossible by normal means. Heat pump also has a local heating loop to spool up fast & extend usable temperature range. Octavalve is pretty special too. Team did great work. No credit to me,” Musk wrote.

While discussing the Superbottle during the Model 3’s teardown, Sandy Munro stated that device, apart from giving serious technical and cost advantages for Tesla, is the very representation of the electric car maker’s vertical integration. By adopting such a device, Tesla pretty much saved on space, assembly costs, and final assembly time. Such is just not possible with other EVs such as the Chevy Bolt, an otherwise great electric car that utilizes three separate cooling systems.

The Tesla Model 3’s Superbottle. (Credit: Hyperchange TV/YouTube)

“The Superbottle is a great example of how the normal automotive companies don’t work together, and Tesla does. That Superbottle crosses many lines that you can’t cross here (in Detroit). If I’m in charge of engine cooling or battery cooling, I don’t want nothing to do with cooling the cabin. And yet, we’ve got the motor cooling, the battery cooling, and electronics, all going through one little bottle that’s got some clever little ball valves that open and close to make sure that everything’s getting heated or everything’s being cooled to where it needs to be. We all thought that was the best thing in the whole damn car,” Munro commented.

Very little is known about the Octovalve and its actual functions for now, but if speculations are correct, it appears that Tesla has created something novel for its newest vehicle’s cooling and heating system once more. This bodes well for the company’s next vehicles as well, such as the Plaid Model S and Model X, the Cybertruck, the Semi, and the next-generation Roadster. Needless to say, it would be very interesting to see what vertically integrated solution Tesla creates for its next electric cars.

Advertisement

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading