News
Tesla’s liquid-cooled charging connector patent paves way for the Semi’s Megachargers
A recently published patent application from Tesla suggests that the electric car maker is continuing in its efforts to improve its already-stellar Supercharger Network. The design outlined in the document, which features a liquid-cooled charging connector, can potentially pave the way for a more ambitious charging infrastructure, perhaps one that can specifically cater to the all-electric Semi’s Megacharger Network.
During the all-electric truck’s unveiling, CEO Elon Musk mentioned that the Semi will be able to replenish as much as 400 miles of range in as little as 30 minutes thanks to a network of Megachargers. Neither Musk nor Tesla provided the specs of the Megacharger during the vehicle’s unveiling, though speculations were high that network might provide a power output that is several times more powerful than the company’s Supercharger V2 Network, which had an output of around 120 kW then (Supercharger V2 stations have since been improved to 150 kW).
Being a large vehicle, the Semi requires a lot of power for its charging needs, involving the rapid transfer of mass amounts of electricity in a very short period of time without encountering any heating issues. This is a key concept outlined by Tesla in its recently published patent, titled “Liquid-Cooled Charging Connector,” which involves the use of a liquid cooling system on a charging connector itself. Tesla describes its concept in the discussion below.

“To transfer energy faster and decrease charging times, the cable and charging connector must be capable of withstanding high current loads. Current charging connectors are limited in the current loads that they can support as their ability to dissipate heat is limited. Thus, there is a need for a new charging connector to solve the aforementioned problems.
“The present disclosure related to a new charging connector. The charging connector has a first electrical socket and a second electrical socket. A first sleeve is concentrically coupled to the first electrical socket and a second sleeve is concentrically coupled to the second electrical socket. A manifold assembly encloses the first and second electrical sockets and the first and second sleeves, such that the first and second sleeves and manifold assembly create a hollow interior space there between. The manifold assembly has an inlet conduit and an outlet conduit such that inlet conduit, interior space, and outlet conduit together create a fluid flow path.
“Cooling fluid flows through the fluid flow path and cools the charging connector. During operation, the cooling fluid bifurcates into a first fluid stream which flows around the first sleeve, and a second fluid stream which flows around the second sleeve. The first and second fluid streams combine upstream of the outlet conduit. The first sleeve encloses the first electrical socket, and the second sleeve encloses the second electrical socket. The cooling sleeves are made from a thermally conducting material such that heat generated by electrical sockets can be removed by the cooling fluid. In embodiments, this thermally conducting material is a thermally conductive plastic material.”
Tesla notes that its liquid-cooled supercharger connector does not only allow faster charging; it also makes the routing of wires in a charging connector much more efficient. This means that Tesla’s Supercharger connectors could eventually be smaller and more compact despite being capable of greater output. An example of this appears to be hinted at by Supercharger V3’s liquid-cooled cables, which are smaller and more compact than those used in Tesla’s V2 Network.

“Cooling fluid absorbs thermal energy from heat in the electrical sockets 404, 406. Sleeves 410, 412 are made of a thermally conducting, electrically insulating material. Heat from the electrical sockets 404, 406 is transferred to cooling fluid through sleeves 410, 412. After flowing around hollow interior space 416, the first fluid stream 804 and the second fluid stream 806 combine together upstream of outlet conduit 514 and flow outside of manifold assembly 414 through outlet conduit 514. Cooling fluid flowing out of manifold assembly 414 through outlet conduit 514 may be received by a reservoir (not shown) which may provide for heat exchanging arrangements. A heat exchanger may be provided to take away heat absorbed by cooling fluid. After rejecting absorbed heat, the cooling fluid may be recirculated back to inlet conduit 512 for further cooling of charging connector 210.
“FIG. 9 shows another component included by charging connector 210. A Printed Circuit Board Assembly (PCBA) 902 is thermally coupled to charging connector 210. In embodiments, PCBA 902 is a two-part structure. A first part of PCBA 904 is coupled to charging connector 210 such that the first part of PCBA 904 sits on top of electrical sockets 404, 406. A second part of PCBA 908 is connected to the first part of PCBA 904 through a rigid-flex PCB construction, or other similar interconnects. The two-part structure of PCB A 902 allows for a more efficient routing of electrical wires of charging connector 210, and overall size of charging connector 210 may be conveniently reduced.”
Tesla’s Superchargers are among the fastest and most expansive electric vehicle charging infrastructures in the auto industry. In keeping with its spirit, the company has made it a point to never stop innovating, as exhibited by the company’s debut and ongoing ramp of its Supercharger V3 Network. This could ultimately pay off for Tesla, whose lead in the electric vehicle race might potentially increase even more.
Such innovations appear to be required of the company, especially with the rollout of ambitious EVs such as the Semi, a vehicle with a different charging infrastructure compared to Tesla’s existing lineup of electric cars. That being said, Tesla nevertheless deserves credit for pushing the envelope and staying on top of its innovations. In the electric vehicle race, after all, a liquid-cooled charging connector could end up making the difference between the fast-charging capabilities of the Tesla Semi and rivals from Daimler and Nikola.
A link to the full text of Tesla’s liquid-cooled charger connector patent could be accessed here.
News
Tesla expands its branded ‘For Business’ Superchargers
Tesla has expanded its branded ‘For Business’ Supercharger program that it launched last year, as yet another company is using the platform to attract EV owners to its business and utilize a unique advertising opportunity.
Francis Energy of Oklahoma is launching four Superchargers in Norman, where the University of Oklahoma is located. The Superchargers, which are fitted with branding for Francis Energy, will officially open tomorrow.
It will not be the final Supercharger location that Francis Energy plans to open, the company confirmed to EVWire.
Back in early September, Tesla launched the new “Supercharger for Business” program in an effort to give businesses the ability to offer EV charging at custom rates. It would give their businesses visibility and would also cater to employees or customers.
“Purchase and install Superchargers at your business,” Tesla wrote on a page on its website for the new program. “Superchargers are compatible with all electric vehicles, bringing EV drivers to your business by offering convenient, reliable charging.”
The first site opened in Land O’ Lakes, Florida, which is Northeast of Tampa, as a company called Suncoast launched the Superchargers for local EV owners.
Tesla launches its new branded Supercharger for Business with first active station
The program also does a great job at expanding infrastructure for EV owners, which is something that needs to be done to encourage more people to purchase Teslas and other electric cars.
Francis Energy operates at least 14 EV charging locations in Oklahoma, spanning from Durant to Oklahoma City and nearly everywhere in between. Filings from the company, listed by Supercharge.info, show the company’s plans to convert some of them to Tesla Superchargers, potentially utilizing the new Supercharger for Business program to advertise.
Moving forward, more companies will likely utilize Tesla’s Supercharger for Business program as it presents major advantages in a variety of ways, especially with advertising and creating a place for EV drivers to gain range in their cars.
News
Tesla Cybercab ‘breakdown’ image likely is not what it seems
Tesla Cybercab is perhaps the most highly-anticipated project that the company plans to roll out this year, and as it is undergoing its testing phase in pre-production currently, there are some things to work through with it.
Over the weekend, an image of the Cybercab being loaded onto a tow truck started circulating on the internet, and people began to speculate as to what the issue could be.
Hmmmmmm… https://t.co/L5hWcOXQkb pic.twitter.com/OJBDyHNTMj
— TESLARATI (@Teslarati) January 11, 2026
The Cybercab can clearly be seen with a Police Officer and perhaps the tow truck driver by its side, being loaded onto, or even potentially unloaded from, the truck.
However, it seems unlikely it was being offloaded, as its operation would get it to this point for testing to begin with.
It appears, at first glance, that it needs assistance getting back to wherever it came from; likely Gigafactory Texas or potentially a Bay Area facility.
The Cybercab was also spotted in Buffalo, New York, last week, potentially undergoing cold-weather testing, but it doesn’t appear that’s where this incident took place.
It is important to remember that the Cybercab is currently undergoing some rigorous testing scenarios, which include range tests and routine public road operation. These things help Tesla assess any potential issue the vehicle could run into after it starts routine production and heads to customers, or for the Robotaxi platform operation.
This is not a one-off issue, either. Tesla had some instances with the Semi where it was seen broken down on the side of a highway three years ago. The all-electric Semi has gone on to be successful in its early pilot program, as companies like Frito-Lay and PepsiCo. have had very positive remarks.
The Cybercab’s future is bright, and it is important to note that no vehicle model has ever gone its full life without a breakdown. It happens, it’s a car.
Nevertheless, it is important to note that there has been no official word on what happened with this particular Cybercab unit, but it is crucial to remember that this is the pre-production testing phase, and these things are more constructive than anything.
Investor's Corner
Tesla analyst teases self-driving dominance in new note: ‘It’s not even close’
Tesla analyst Andrew Percoco of Morgan Stanley teased the company’s dominance in its self-driving initiative, stating that its lead over competitors is “not even close.”
Percoco recently overtook coverage of Tesla stock from Adam Jonas, who had covered the company at Morgan Stanley for years. Percoco is handling Tesla now that Jonas is covering embodied AI stocks and no longer automotive.
His first move after grabbing coverage was to adjust the price target from $410 to $425, as well as the rating from ‘Overweight’ to ‘Equal Weight.’
Percoco’s new note regarding Tesla highlights the company’s extensive lead in self-driving and autonomy projects, something that it has plenty of competition in, but has established its prowess over the past few years.
He writes:
“It’s not even close. Tesla continues to lead in autonomous driving, even as Nvidia rolls out new technology aimed at helping other automakers build driverless systems.”
Percoco’s main point regarding Tesla’s advantage is the company’s ability to collect large amounts of training data through its massive fleet, as millions of cars are driving throughout the world and gathering millions of miles of vehicle behavior on the road.
This is the main point that Percoco makes regarding Tesla’s lead in the entire autonomy sector: data is King, and Tesla has the most of it.
One big story that has hit the news over the past week is that of NVIDIA and its own self-driving suite, called Alpamayo. NVIDIA launched this open-source AI program last week, but it differs from Tesla’s in a significant fashion, especially from a hardware perspective, as it plans to use a combination of LiDAR, Radar, and Vision (Cameras) to operate.
Percoco said that NVIDIA’s announcement does not impact Morgan Stanley’s long-term opinions on Tesla and its strength or prowess in self-driving.
NVIDIA CEO Jensen Huang commends Tesla’s Elon Musk for early belief
And, for what it’s worth, NVIDIA CEO Jensen Huang even said some remarkable things about Tesla following the launch of Alpamayo:
“I think the Tesla stack is the most advanced autonomous vehicle stack in the world. I’m fairly certain they were already using end-to-end AI. Whether their AI did reasoning or not is somewhat secondary to that first part.”
Percoco reiterated both the $425 price target and the ‘Equal Weight’ rating on Tesla shares.