

Energy
Tesla patent hints at system that makes Solar Roof tiles look even better
While Tesla’s Solar Roof tiles are already being installed on the homes of first customers in the United States, the shingles themselves are still in initial production. Unveiled back in October 2016, the Solar Roof tiles are expected hit larger production volumes this year. As the company heads into yet another ramp of a potentially disruptive product, though, Tesla appears to be working on some improvements on the tiles’ design as well.
As noted in a recently published patent application, Tesla is developing a system that would allow the company to improve the aesthetics of the solar shingles even further. In the patent application’s description, Tesla noted that integrated photovoltaic (BIPV) roofing systems such as the Solar Roof tiles are becoming more popular in the residential solar market, thanks to their benefits in both function and design. That said, while BIPV systems present an excellent solution for design-conscious customers, the system itself faces some challenges — the most notable of which is visual uniformity.
Tesla notes that in prior art BIPV roofing systems, the active solar portions of a roofing module end up being visibly different in appearance compared to inactive parts of the roof. The company notes that this contrast in appearance can get so pronounced that it becomes easy to spot which tiles are active and which are inactive from road level. Tesla notes that even in the design of the shingles themselves, it is quite easy to determine which parts of the tiles are active and which ones are not.
“This problem of visual mismatch, however, is not limited to BIPV versus non-BIPV sections of the roof. Even within a single roof tile and/or BIPV roofing module, the solar cells or active solar regions are clearly distinguishable from the other surrounding materials. This is due in part to edge setback constraints that impose a fixed, non-active edge border around active solar portions of solar roof tiles or BIPV roofing modules. Therefore, there exists a need for a solar roof tile or BIPV roofing module that ameliorates deficiencies of prior art BIPV roofing systems,” Tesla wrote.
- Tesla’s solar shingle design outlined in its recent patent application. (Photo: US Patent Office)
- Tesla’s solar shingle design outlined in its recent patent application. (Photo: US Patent Office)
The design of Tesla’s solar shingles outlined in its recent patent application. (Photo: US Patent Office)
Tesla explains this design issue for BIPV roofing systems more extensively in the section below.
“In either tile 105 of FIG. 2 or tile 106 of FIG. 3, the lack of active thin-film material within the edge setback results in a relatively large, e.g. ˜16 mm, visible border around the outside of active area 112 that is noticeable not only when viewed up close, but even at street level distances from a roof surface. This result can be seen in the extended partial array 100 of FIG. 4. The relatively large percentage of tile surface area of the edge setback that is devoid of thin-film material creates a sharply contrasting two-color/two-tone pattern between the area surrounding the active area of thin-film photovoltaic material and the active area of thin-film photovoltaic material. In embodiments, techniques are used to provide aesthetic uniformity such as depositing colored material on the underside of top glass 110 prior to lamination to conceal active area 112 beneath. This approach, however, may result in a reduction in energy collection because these extra materials may block photons from reaching active area 112.”
Tesla’s solution for this aesthetic challenge — which uses an inactive area of thin-film photovoltaic material that surrounds a solar shingles’ active area — is simple and clever. Tesla describes its design in the section below.
“As shown, the tiles 205 include a substantially rectangular active 212 surrounded by a substantially rectangular board of an inactive area 225. In embodiments, the inactive area may completely surround the active area or may only be present on one, two or three sides of the active area. As shown in FIG. 5, the tiles 205 create a more uniform look and, when viewed at distances, such as in shown in FIG. 8, adhesion area 215 blends into the natural seams between adjacent tiles or between active areas 212 of adjacent tile sections. The visible material difference has been attenuated by the use of non-active thin-film material within a portion of the setback region allowing for a smaller adhesion zone.”
Tesla’s recent patent application would be particularly useful for the other Solar Roof variants planned by the company. So far, social media posts from Solar Roof owners show homes fitted with the company’s Textured tiles, whose design inherently bypasses the uniformity issues described in the patent application. As for other Solar Roof variants like Smooth and Tuscan, though, the recent application’s innovations would certainly be beneficial.
Tesla’s Solar Roof tiles are being produced at Gigafactory 2 in Buffalo, NY. Over the years, the facility has largely evaded attention, particularly as Tesla’s energy business was mostly overshadowed by the company’s ramp for the Model 3. Last year, though, Tesla opened the doors of Gigafactory 2 to the media, providing a glimpse of what is in store for the company’s residential solar business. While Tesla did not provide specifics on the facility’s current output, the electric car and energy company did state that Gigafactory 2 is operating 24/7, and that the long waiting list for the Solar Roof tiles would likely keep the entire facility busy for years.
Energy
Tesla’s new Megablock system can power 400,000 homes in under a month
Tesla also unveiled the Megapack 3, the latest iteration of its flagship utility scale battery.

Tesla has unveiled the Megablock and Megapack 3, the latest additions to its industrial-scale battery storage solution lineup.
The products highlight Tesla Energy’s growing role in the company, as well as the division’s growing efforts to provide sustainable energy solutions for industrial-scale applications.
Megablock targets speed and scale
During the “Las Megas” event in Las Vegas, Tesla launched Megablock, a pre-engineered medium-voltage block designed to integrate Megapack 3 units in a plug-and-play system. Capable of 20 MWh AC with a 25-year life cycle and more than 10,000 cycles, the Megablock could achieve 91% round-trip efficiency at medium voltage, inclusive of auxiliary loads.
Tesla emphasized that Megablock can be installed 23% faster with up to 40% lower construction costs. The platform eliminates above-ground cabling through a new flexible busbar assembly and delivers site-level density of 248 MWh per acre. With Megablock, Tesla is also aiming to commission 1 GWh in just 20 business days, or enough to power 400,000 homes in less than a month.
“With Megablock, we are targeting to commission 1 GWh in 20 business days, which is the equivalent of bringing power to 400,000 homes in less than a month. It’s crazy. How are we planning to do that? Like most things at Tesla, we are ruthlessly attacking every opportunity to save our customers time, simplify the process, remove steps, (and) automate as much as we can,” the company said.
Megapack 3 is all about simplicity
The Megapack 3 is Tesla’s next-generation utility battery, designed with a simplified architecture that cuts 78% of connections compared to the previous version. Its thermal bay is drastically simplified, and it uses a Model Y heat pump on steroids. The battery weighs about 86,000 pounds and holds 5 MWh of usable AC energy. Tesla engineers incorporated a larger battery module and a new 2.8-liter LFP cell co-developed with the company’s cell team.
The Megapack 3 is designed for serviceability, and it features easier front access and no roof penetrations. About 75% of Megapack 3’s total mass is battery cells, with individual modules weighing as much as a Cybertruck. It’s also tough, with an ambient operating temperature range from -40C to 60C. This should allow the Megapack 3 to operate optimally from the coldest to the hottest regions on the planet.
Production is set to begin at Tesla’s Houston Megafactory in late 2026, with planned capacity of 50 GWh per year. Additional supply will come from Tesla’s 7 GWh LFP facility in Nevada, which is expected to open in 2025, as well as with third-party partners.
Energy
Tesla Energy is the world’s top global battery storage system provider again
Tesla Energy captured 15% of the battery storage segment’s global market share in 2024.

Tesla Energy held its top position in the global battery energy storage system (BESS) integrator market for the second consecutive year, capturing 15% of global market share in 2024, as per Wood Mackenzie’s latest rankings.
Tesla Energy’s lead, however, is shrinking, as Chinese competitors like Sungrow are steadily increasing their global footprint, particularly in European markets.
Tesla Energy dominates in North America, but its lead is narrowing globally
Tesla Energy retained its leadership in the North American market with a commanding 39% share in 2024. Sungrow, though still ranked second in the region, saw its share drop from 17% to 10%. Powin took third place, even if the company itself filed for bankruptcy earlier this year, as noted in a Solar Power World report.
On the global stage, Tesla Energy’s lead over Sungrow shrank from four points in 2023 to just one in 2024, indicating intensifying competition. Chinese firm CRRC came in third worldwide with an 8% share.
Wood Mackenzie ranked vendors based on MWh shipments with recognized revenue in 2024. According to analyst Kevin Shang, “Competition among established BESS integrators remains incredibly intense. Seven of the top 10 vendors last year struggled to expand their market share, remaining either unchanged or declining.”

Chinese integrators surge in Europe, falter in U.S.
China’s influence on the BESS market continues to grow, with seven of the global top 10 BESS integrators now headquartered in the country. Chinese companies saw a 67% year-over-year increase in European market share, and four of the top 10 BESS vendors in Europe are now based in China. In contrast, Chinese companies’ market share in North America dropped more than 30%, from 23% to 16% amid Tesla Energy’s momentum and the Trump administration’s policies.
Wood Mackenzie noted that success in the global BESS space will hinge on companies’ ability to adapt to divergent regulations and geopolitical headwinds. “The global BESS integrator landscape is becoming increasingly complex, with regional trade policies and geopolitical tensions reshaping competitive dynamics,” Shang noted, pointing to Tesla’s maintained lead and the rapid ascent of Chinese rivals as signs of a shifting industry balance.
“While Tesla maintains its global leadership, the rapid rise of Chinese integrators in Europe and their dominance in emerging markets like the Middle East signals a fundamental shift in the industry. Success will increasingly depend on companies’ ability to navigate diverse regulatory environments, adapt to local market requirements, and maintain competitive cost structures across multiple regions,” the analyst added.
Energy
Tesla inks multi-billion-dollar deal with LG Energy Solution to avoid tariff pressure
Tesla has reportedly secured a sizable partnership with LGES for LFP cells, and there’s an extra positive out of it.

Tesla has reportedly inked a multi-billion-dollar deal with LG Energy Solution in an effort to avoid tariff pressure and domesticate more of its supply chain.
Reuters is reporting that Tesla and LGES, a South Korean battery supplier of the automaker, signed a $4.3 billion deal for energy storage system batteries. The cells are going to be manufactured by LGES at its U.S. factory located in Michigan, the report indicates. The batteries will be the lithium iron phosphate, or LFP, chemistry.
Tesla delivers 384,000 vehicles in Q2 2025, deploys 9.6 GWh in energy storage
It is a move Tesla is making to avoid buying cells and parts from overseas as the Trump White House continues to use tariffs to prioritize domestic manufacturing.
LGES announced earlier today that it had signed a $4.3 billion contract to supply LFP cells over three years to a company, but it did not identify the customer, nor did the company state whether the batteries would be used in automotive or energy storage applications.
The deal is advantageous for both companies. Tesla is going to alleviate its reliance on battery cells that are built out of the country, so it’s going to be able to take some financial pressure off itself.
For LGES, the company has reported that it has experienced slowed demand for its cells in terms of automotive applications. It planned to offset this demand lag with more projects involving the cells in energy storage projects. This has been helped by the need for these systems at data centers used for AI.
During the Q1 Earnings Call, Tesla CFO Vaibhav Taneja confirmed that the company’s energy division had been impacted by the need to source cells from China-based suppliers. He went on to say that the company would work on “securing additional supply chain from non-China-based suppliers.”
It seems as if Tesla has managed to secure some of this needed domestic supply chain.
-
Elon Musk2 weeks ago
Tesla’s next-gen Optimus prototype with Grok revealed
-
News1 week ago
Tesla launches new Supercharger program that business owners will love
-
Elon Musk1 week ago
Tesla Board takes firm stance on Elon Musk’s political involvement in pay package proxy
-
News2 weeks ago
Tesla appears to be mulling a Cyber SUV design
-
News2 weeks ago
Tesla deploys Unsupervised FSD in Europe for the first time—with a twist
-
News2 weeks ago
Tesla explains why Robotaxis now have safety monitors in the driver’s seat
-
News2 weeks ago
Tesla is already giving Robotaxi privileges hours after opening public app
-
Elon Musk2 weeks ago
Elon Musk says Tesla will take Safety Drivers out of Robotaxi: here’s when