Connect with us

News

US Air Force issues RFP for massive rockets, SpaceX’s BFR could be one of them

Published

on

The US Air Force has released a Request For Proposal (RFP) that hopes to fund the development of multiple heavy-lift rocket prototypes to launch no later than 2021. The USAF specified on October 5 that it wants to partially fund prototype development for at least three promising US-sourced launch vehicles, while maintaining the options to select none of the proposals or even more than three. The purpose of these broad strokes is to provide the Air Force and US military in general redundant access to space by way of “at least two domestic…launch service providers” capable of meeting National Security Space (NSS) requirements.

However unlikely it may seem, NASA experienced this firsthand when two of the vehicles it funded, SpaceX’s Falcon 9 and Orbital-ATK’s Antares, experienced complete failures within less than a year of each other. Both vehicle failures destroyed supplies intended for the International Space Station and forced NASA to rely on Soyuz missions to fill the gaps created while producing considerable uncertainty for the agency. By funding two or more independent launch vehicles, the Air Force would lessen the impact of such failures, and this assured access is rightly perceived as an invaluable commodity in the military.

Several details in the latest proposal make it relatively easy to name the obvious prospective applicants. The payload requirements necessitate heavy lift or even super-heavy lift launch vehicles capable of placing anywhere from 5,000 to 37,500 pounds into a variety of Earth orbits, ranging from low Earth orbit (~500 mi) to direct transfer geostationary orbits (~19,200 mi). This narrows the field considerably, pushing out all smaller-scale vehicles. Also telling is a requirement that proposed launch vehicles make use of rocket propulsion systems (RPS) already funded for development by the USAF if at all possible.

Considering the inherently complex and difficult process of developing massive rockets, initial launch dates no later than 2021 (or 2024) likely mean that the vehicles being considered must already be under some level of serious development. This leaves us with four possible options in the US, undoubtedly not a coincidence given the RFP’s explicit goal of facilitating the creation of “at least three…prototypes as early as possible” and “at least two domestic…launch service providers”. These four vehicles are SpaceX’s BFR, Blue Origin’s New Glenn, ULA’s Vulcan, and Orbital-ATK’s NGL, all of which already have tentative inaugural launch dates clustered from 2019 to 2022. Perhaps even more revealing, all four vehicles can be expected to utilize several rocket propulsion systems (rocket engines) already funded by the Air Force, namely SpaceX’s Raptor, Blue Origin’s BE-4 and BE-3U, and Aerojet-Rocketdyne’s AR-1.

While the development of BE-4 and AR-1 have been somewhat veiled, SpaceX’s Raptor engine has publicly made a great deal of progress. As discussed during Elon Musk’s IAC 2017 presentation, the company has conducted an array of successful tests with its subscale Raptor program, to the tune of 42 individual hot-fire tests totaling more than 1,200 seconds. Musk also reported that the only thing preventing tests longer than 100 seconds was the size of the propellant tanks at the test stand, a genuinely impressive accomplishment if true. The sticking point, however, is how much difficulty SpaceX will have as they transfer to full-scale Raptor testing. The subscale Raptors being tested have a reported thrust of 1,000 kN, whereas the new full-scale thrust targets for BFR have settled on 1,700-1,900 kN, considerably smaller than the 3,000 kN figure from 2016 but still nearly a factor of two larger than the test articles SpaceX has had success with. In fact, educated speculation from SpaceX fans suggest that the operational Raptor as shown in 2017 may only need to be about 15% larger than the current test article(s). The pressure the full-size engine operates at will be considerably higher, so SpaceX’s work is not done by any means, but the company’s next-gen rocket propulsion system is arguably far closer to completion than any of its competitors’ offerings.

Advertisement
-->

 

As far as we are publicly aware, SpaceX’s subscale Raptor testing has yet to result in a major failure and has largely been a great success. Blue Origin’s BE-4 is known to have experienced at least one critical failure during hot-fire testing, while AR-1 has not yet begun full engine tests but is well into concrete hardware testing. Blue Origin’ s BE-4 engine and its New Glenn rocket are currently expected to fly for the first time before 2020, with AR’s NGL tentatively planning for a 2021 inaugural flight, assuming the company chooses to continue pursuing its development.

SpaceX has not yet specified when BFR or BFS will first take flight. Raptor is likely to begin full-scale testing relatively soon, and Musk revealed that SpaceX was aiming to begin construction of the first BFR as early as Q2 of 2018. It’s quickly starting to look like the U.S. is about to enter a sort of modern commercial space race and regardless of the outcome, the next several months and years are bound to be tense and exciting for SpaceX, Blue Origin, and the established incumbents as they battle for both public and private contracts.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Published

on

Ashok Elluswamy

Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Elon and Ashok’s firsthand Robotaxi insights

Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.” 

Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.

Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”

Advertisement
-->

Towards Unsupervised operations

During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.

Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.

Continue Reading

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading