Connect with us

News

US Air Force issues RFP for massive rockets, SpaceX’s BFR could be one of them

Published

on

The US Air Force has released a Request For Proposal (RFP) that hopes to fund the development of multiple heavy-lift rocket prototypes to launch no later than 2021. The USAF specified on October 5 that it wants to partially fund prototype development for at least three promising US-sourced launch vehicles, while maintaining the options to select none of the proposals or even more than three. The purpose of these broad strokes is to provide the Air Force and US military in general redundant access to space by way of “at least two domestic…launch service providers” capable of meeting National Security Space (NSS) requirements.

However unlikely it may seem, NASA experienced this firsthand when two of the vehicles it funded, SpaceX’s Falcon 9 and Orbital-ATK’s Antares, experienced complete failures within less than a year of each other. Both vehicle failures destroyed supplies intended for the International Space Station and forced NASA to rely on Soyuz missions to fill the gaps created while producing considerable uncertainty for the agency. By funding two or more independent launch vehicles, the Air Force would lessen the impact of such failures, and this assured access is rightly perceived as an invaluable commodity in the military.

Several details in the latest proposal make it relatively easy to name the obvious prospective applicants. The payload requirements necessitate heavy lift or even super-heavy lift launch vehicles capable of placing anywhere from 5,000 to 37,500 pounds into a variety of Earth orbits, ranging from low Earth orbit (~500 mi) to direct transfer geostationary orbits (~19,200 mi). This narrows the field considerably, pushing out all smaller-scale vehicles. Also telling is a requirement that proposed launch vehicles make use of rocket propulsion systems (RPS) already funded for development by the USAF if at all possible.

Considering the inherently complex and difficult process of developing massive rockets, initial launch dates no later than 2021 (or 2024) likely mean that the vehicles being considered must already be under some level of serious development. This leaves us with four possible options in the US, undoubtedly not a coincidence given the RFP’s explicit goal of facilitating the creation of “at least three…prototypes as early as possible” and “at least two domestic…launch service providers”. These four vehicles are SpaceX’s BFR, Blue Origin’s New Glenn, ULA’s Vulcan, and Orbital-ATK’s NGL, all of which already have tentative inaugural launch dates clustered from 2019 to 2022. Perhaps even more revealing, all four vehicles can be expected to utilize several rocket propulsion systems (rocket engines) already funded by the Air Force, namely SpaceX’s Raptor, Blue Origin’s BE-4 and BE-3U, and Aerojet-Rocketdyne’s AR-1.

While the development of BE-4 and AR-1 have been somewhat veiled, SpaceX’s Raptor engine has publicly made a great deal of progress. As discussed during Elon Musk’s IAC 2017 presentation, the company has conducted an array of successful tests with its subscale Raptor program, to the tune of 42 individual hot-fire tests totaling more than 1,200 seconds. Musk also reported that the only thing preventing tests longer than 100 seconds was the size of the propellant tanks at the test stand, a genuinely impressive accomplishment if true. The sticking point, however, is how much difficulty SpaceX will have as they transfer to full-scale Raptor testing. The subscale Raptors being tested have a reported thrust of 1,000 kN, whereas the new full-scale thrust targets for BFR have settled on 1,700-1,900 kN, considerably smaller than the 3,000 kN figure from 2016 but still nearly a factor of two larger than the test articles SpaceX has had success with. In fact, educated speculation from SpaceX fans suggest that the operational Raptor as shown in 2017 may only need to be about 15% larger than the current test article(s). The pressure the full-size engine operates at will be considerably higher, so SpaceX’s work is not done by any means, but the company’s next-gen rocket propulsion system is arguably far closer to completion than any of its competitors’ offerings.

Advertisement
-->

 

As far as we are publicly aware, SpaceX’s subscale Raptor testing has yet to result in a major failure and has largely been a great success. Blue Origin’s BE-4 is known to have experienced at least one critical failure during hot-fire testing, while AR-1 has not yet begun full engine tests but is well into concrete hardware testing. Blue Origin’ s BE-4 engine and its New Glenn rocket are currently expected to fly for the first time before 2020, with AR’s NGL tentatively planning for a 2021 inaugural flight, assuming the company chooses to continue pursuing its development.

SpaceX has not yet specified when BFR or BFS will first take flight. Raptor is likely to begin full-scale testing relatively soon, and Musk revealed that SpaceX was aiming to begin construction of the first BFR as early as Q2 of 2018. It’s quickly starting to look like the U.S. is about to enter a sort of modern commercial space race and regardless of the outcome, the next several months and years are bound to be tense and exciting for SpaceX, Blue Origin, and the established incumbents as they battle for both public and private contracts.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink achieves major milestones in 2025 progress report

Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets.

Published

on

Credit: Starlink/X

Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets. The company also completed deployment of its first-generation Direct to Cell constellation, launching over 650 satellites in just 18 months to enable cellular connectivity.

SpaceX highlighted Starlink’s impressive 2025 progress in an extensive report.

Key achievements from Starlink’s 2025 Progress

Starlink connected over 4.6 million new customers with high-speed internet while bringing service to 35 more regions worldwide in 2025. Starlink is now connecting 9.2 million people worldwide. The service achieved this just weeks after hitting its 8 million customer milestone.

Starlink is now available in 155 markets, including areas that are unreachable by traditional ISPs. As per SpaceX, Starlink has also provided over 21 million airline passengers and 20 million cruise passengers with reliable high-speed internet connectivity during their travels.

Starlink Direct to Cell

Starlink’s Direct to Cell constellation, more than 650 satellites strong, has already connected over 12 million people at least once, marking a breakthrough in global mobile coverage.
Starlink Direct to Cell is currently rolled out to 22 countries and 6 continents, with over 6 million monthly customers. Starlink Direct to Cell also has 27 MNO partners to date.

Advertisement
-->

This year, SpaceX completed deployment of the first generation of the Starlink Direct to Cell constellation, with more than 650 satellites launched to low-Earth orbit in just 18 months. Starlink Direct to Cell has connected more than 12 million people, and counting, at least once, providing life-saving connectivity when people need it most,” SpaceX wrote.

starlinkProgressReport_2025 by Simon Alvarez

Continue Reading

News

Tesla Giga Nevada celebrates production of 6 millionth drive unit

To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo. 

Published

on

Tesla’s Giga Nevada has reached an impressive milestone, producing its 6 millionth drive unit as 2925 came to a close.

To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo. 

6 million drive units

The achievement was shared by the official Tesla Manufacturing account on social media platform X. “Congratulations to the Giga Nevada team for producing their 6 millionth Drive Unit!” Tesla wrote. 

The photo showed numerous factory workers assembled on the production floor, proudly holding golden balloons that spelled out “6000000″ in front of drive unit assembly stations. Elon Musk gave credit to the Giga Nevada team, writing, “Congrats on 6M drive units!” in a post on X.

Giga Nevada’s essential role

Giga Nevada produces drive units, battery packs, and energy products. The facility has been a cornerstone of Tesla’s scaling since opening, and it was the crucial facility that ultimately enabled Tesla to ramp the Model 3 and Model Y. Even today, it serves as Tesla’s core hub for battery and drivetrain components for vehicles that are produced in the United States.

Advertisement
-->

Giga Nevada is expected to support Tesla’s ambitious 2026 targets, including the launch of vehicles like the Tesla Semi and the Cybercab. Tesla will have a very busy 2026, and based on Giga Nevada’s activities so far, it appears that the facility will be equally busy as well.

Continue Reading

News

Tesla Supercharger network delivers record 6.7 TWh in 2025

The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.

Published

on

tesla-diner-supercharger
Credit: Tesla

Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide. 

To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.

Record 6.7 TWh delivered in 2025

The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream. 

Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.

This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.

Advertisement
-->

Resilience after Supercharger team changes

2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”

Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.

Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible. 

Continue Reading