Connect with us

News

SpaceX’s Mr. Steven returns with Falcon fairing half in net after drop test practice

Published

on

Captured in a series of photos taken by Teslarati photographers Pauline Acalin and Tom Cross over several days, SpaceX Falcon fairing recovery vessel Mr. Steven and recovery technicians and engineers have been preparing and practicing for a campaign of controlled fairing drop tests.

By using a helicopter to lift and drop a fairing into Mr. Steven’s net, SpaceX will be able to gather an unprecedented amount of data and control far more variables that might impact the success of recoveries. If the fairing is not destroyed in the process, this test series could be as long-lived as SpaceX’s Grasshopper program, used to work the largest up-front kinks out of Falcon 9 booster recovery.

Although SpaceX technicians managed to reassemble and install Mr. Steven’s net and arm fairing recovery mechanisms in just a handful of days, finishing less than 48 hours before the West Coast launch of SAOCOM 1A, the ship remained in port for the mission, passing up its fifth opportunity to attempt recovery of one of Falcon 9’s two fairings halves. Why exactly Mr. Steven never left port is unclear and unconfirmed, although SpaceX did mention that recovery would not be attempted this time around during its official launch webcast.

Advertisement

The most likely explanation is mundane – sea states with average swells as large as 4m (13ft) were forecasted (and later recorded) at and around the optimal fairing recovery zone. As a Fast Supply Vessel (FSV) explicitly designed to rapidly and reliably resupply oil rigs and other maritime work areas almost regardless of weather conditions, 4m waves would normally be a tiny pittance for ships as large and heavy as Mr. Steven and would be a nonsensical reason to halt deep-sea operations.

 

On the other hand, Mr. Steven is without a doubt the most unusual FSV in existence thanks to his massive arms and net, stretching at least 60m by 60m. Based on photos of the arm installation process, significant lists of 5+ degrees are not uncommon when arms are unbalanced during normal staggered (one-at-a-time) installations, and SpaceX quite clearly installs the first two arms on opposite sides and orientations in order to minimize installation-related listing. This indicates that his newest arms have significant mass and thus leverage over the boat’s roll characteristics, perhaps explaining why Mr. Steven has performed anywhere from 5-10 high-speed trials at sea both with and without arms installed.

Most recently, however, Mr. Steven spent a solid six weeks armless at Berth 240 while some sort of maintenance, analysis, or upgrade was undertaken with those four arms and their eight shock-absorbing booms. It’s hard to know for sure, but there are no obvious visual changes between the arms installed in July and August and those now present on his deck, and the net also looks almost identical.

Fairing drop tests?

What’s less familiar these days is an oddly arranged Falcon 9 payload fairing half that has been floating around SpaceX’s Port of Los Angeles berths for the last two or so weeks. Up until October 4th, the purpose of that single half was almost entirely unclear. On October 4th, Teslarati’s entire space team (Tom, Pauline, and I) coincidentally arrived at the same time as 5-10 SpaceX technicians were working on the fairing, attaching a series of guylines and harnesses and inspecting a number of actuating mechanisms on the half.

Advertisement
First spotted at Berth 52 (JRTI’s home), the particular fairing half appears to both be significantly unfinished and potentially cobbled together from hardware not meant for flight. Note the writing on the leftmost port: “NOT FOR FLIGHT … SCRAP”. (Pauline Acalin)

Just minutes after we arrived, a worker called out a short countdown and a wholly unexpected crashing noise sounded, followed immediately by several loud clangs as the harness connection mechanisms swung back and connected with metallic parts of the fairing. After the adrenaline wore off, the initial crashing noise was almost certainly the sound of the same mechanical jettison mechanism used to separate fairing halves ~3 minutes after the rocket lifts off.

Once photos of the event could be examined more carefully, that was exactly what we found – the six harness connections were attached to the fairing by way of the same mechanical interface that allows two halves to safely attach to each other. What we had witnessed was a harness separation test, using pressurized gas stored in COPVs (the gold striped cylinders) to rapidly actuate a latch, allowing the metal harness connectors to fall away. This is further evidenced by the presence of neon orange zip-ties connecting the ends of those harnesses to any sturdy fairing structure near the connection port, an easy and (presumably) affordable way to prevent those heavy connectors from swinging down and damaging sensitive piping and components.

 

According to someone familiar with these activities, the purpose of that testing is to prepare for true fairing drop tests from a helicopter. The jettisonable harness would be a necessity for easy drop testing, allowing the helicopter to carry a basic cargo hook and line while technicians inside communicate with the fairing to engage its built-in separation mechanism, all while ensuring that it immediately begins a stable glide or free-fall after dropping.

Observed on October 4th, it was at least moderately disappointing to see Mr. Steven remain in port during the spectacular Falcon 9 launch of SAOCOM 1A, October 7th. Reasons aside, roughly 12 hours after launch, Mr. Steven left on a 10+ hour cruise ~100 miles off the coast, where he repeatedly met up with tugboat Tommy and circled Santa Catalina Island once before heading back to port. Just 24 hours before launch (Oct. 6), the test fairing seen above was placed in Mr. Steven’s net for communications and harness testing – 24 hours after launch, Mr. Steven returned to Port of San Pedro after his 10-hour cruise with the same fairing half resting in his net.

 

Advertisement

How and why it got there is unknown, as is the purpose of half a day spent boating around with the half in his net. However, a helicopter known to be involved in fairing drop tests was seen hovering and flying around Mr. Steven at the same time. Perhaps the two were practicing for real drop attempts, or perhaps the helicopter actually dropped a Falcon fairing (from > 2000 feet) and Mr. Steven successful caught it.

What is clear is that SpaceX is just getting started with efforts to perfect fairing recovery and eventually make the practice as (relatively) routine as Falcon 9 booster recovery and reuse is today. The latter was hardwon and the former will clearly be no easier.


For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk reveals when SpaceX will perform first-ever Starship catch

“Starship catch is probably flight 13 to 15, depending on how well V3 flights go,” Musk said.

Published

on

Credit: SpaceX

Elon Musk revealed when SpaceX would perform the first-ever catch attempt of Starship, its massive rocket that will one day take life to other planets.

On Tuesday, Starship aced its tenth test flight as SpaceX was able to complete each of its mission objectives, including a splashdown of the Super Heavy Booster in the Gulf, the deployment of eight Starlink simulators, and another splashdown of the ship in the Indian Ocean.

It was the first launch that featured a payload deployment:

SpaceX Starship Flight 10 was so successful, it’s breaking the anti-Musk narrative

SpaceX was transparent that it would not attempt to catch the Super Heavy Booster, something it has done on three previous occasions: Flight 5 on October 13, 2024, Flight 7 on January 16, and Flight 8 on March 6.

Advertisement

This time, it was not attempting to do so. However, there are bigger plans for the future, and Musk detailed them in a recent post on X, where he discussed SpaceX’s plans to catch Starship, which would be a monumental accomplishment.

Musk said the most likely opportunities for SpaceX to catch Starship itself would be Flight 13, Flight 14, and Flight 15, but it depends on “how well the V3 flights go.”

The Starship launched with Flight 10 was a V2, which is the same size as the subsequent V3 rocket but has a smaller payload-to-orbit rating and is less powerful in terms of initial thrust and booster thrust. Musk said there is only one more V2 rocket left to launch.

Advertisement

V3 will be the version flown through 2026, as V4, which will be the most capable Starship build SpaceX manufactures, is likely to be the first company ship to carry humans to space.

Musk said that SpaceX planned to “hopefully” attempt a catch of Starship in 2025. However, it appears that this will likely be pushed back to 2026 due to timing.

SpaceX will take Starship catch one step further very soon, Elon Musk confirms

SpaceX would need to launch the 11th and 12th test flights by the end of the year in order to get to Musk’s expected first catch attempt of Flight 13. It’s not unheard of, but the company will need to accelerate its launch rate as it has only had three test flights this year.

Advertisement
Continue Reading

News

Tesla Robotaxi rival Waymo confirms massive fleet expansion in Bay Area

New data from the California Public Utilities Commission (CPUC) said Waymo had 1,429 vehicles operating in California, and 875 of them were “associated with a terminal in San Francisco,” according to The SF Examiner.

Published

on

Credit: Uber

Tesla Robotaxi rival Waymo has confirmed that it has expanded its fleet of driverless ride-sharing vehicles in the Bay Area of California massively since its last public disclosure.

It is perhaps one of the most important metrics in the race for autonomous supremacy, along with overall service area. Tesla has seemed to focus on the latter, while expanding its fleet slowly to maintain safety.

Waymo, on the other hand, is bringing its fleet size across the country to significant levels. In March, it told The SF Examiner that there were over 300 Waymos in service in the San Francisco area, which was not a significant increase from the 250 vehicles on the road it reported in August 2023.

In May, the company said in a press release that it had more than 1,500 self-driving Waymos operating nationwide. More than 600 were in the San Francisco area.

Tesla analyst compares Robotaxi to Waymo: ‘The contrast was clear’

Advertisement

However, new data from the California Public Utilities Commission (CPUC) said Waymo had 1,429 vehicles operating in California, and 875 of them were “associated with a terminal in San Francisco,” according to The SF Examiner.

CPUC data from March 2025 indicated that there were a total of 1,087 Waymo vehicles in California, with 762 located in San Francisco. Some were test vehicles, others were deployed to operate as ride-sharing vehicles.

The company’s August update also said that it deploys more than 2,000 commercial vehicles in the United States. That number was 1,500 in May. There are also roughly 400 in Phoenix and 500 in Los Angeles.

While Waymo has done a good job of expanding its fleet, it has also been able to expand its footprint in the various cities it is operating in.

Most recently, it grew its geofence in Austin, Texas, to 90 square miles. This outpaced Tesla for a short period before the company expanded its Robotaxi service area earlier this week to roughly 170 square miles.

Advertisement

Tesla one-ups Waymo once again with latest Robotaxi expansion in Austin

The two companies have drastically different approaches to self-driving, as Waymo utilizes LiDAR, while Tesla relies solely on cameras for its suite. Tesla CEO Elon Musk has made no mistake about which he believes to be the superior solution to autonomy.

Continue Reading

News

Tesla launches Full Self-Driving in a new region

Today, Tesla launched Full Self-Driving in Australia for purchase by car buyers for $10,100, according to Aussie automotive blog Man of Many, which tried out the suite earlier this week.

Published

on

Credit: Tesla

Tesla has launched its Full Self-Driving suite in a new region, marking a significant step in the company’s progress to expand its driver assistance suite on a global scale.

It is also the first time Tesla has launched FSD in a right-hand-drive market.

Today, Tesla launched Full Self-Driving in Australia for purchase by car buyers for $10,100, according to Aussie automotive blog Man of Many, which tried out the suite earlier this week.

Previously, Basic and Enhanced Autopilot suites were available, but the FSD capability now adds Traffic Light and Stop Sign Control, along with all the features of the previous two Autopilot suites.

It is the first time Tesla has launched the suite by name in a region outside of North America. In China, Tesla has “City Autopilot,” as it was not permitted to use the Full Self-Driving label for regulatory reasons.

However, Tesla still lists Full Self-Driving (Supervised) as available in the U.S., Canada, China, Mexico, and Puerto Rico.

The company teased the launch of the suite in Australia earlier this week, and it appeared to have been released to select media members in the region earlier this week:

Advertisement

Tesla FSD upcoming Australia release seemingly teased bv media

The rollout of Full Self-Driving in the Australian market will occur in stages, as Model 3 and Model Y vehicles with Hardware 4 will receive the first batch of FSD rollouts in the region.

TechAU also reported that “the initial deployment of FSDs in Australia will roll out to a select number of people outside the company, these people are being invited into Tesla’s Early Access Program.”

Additionally, the company reportedly said it is “very close” to unlocking FSD in customer cars:

Each new Tesla sold will also come with a 30-day free trial of the suite.

Australia is the sixth country to officially have Full Self-Driving available to them, following the United States, Canada, China, Mexico, and Puerto Rico.

Here’s the first look at the suite operating in Australia:

Advertisement

Continue Reading

Trending