Connect with us

News

Blue Origin scraps New Glenn recovery ship, finishes first ‘test tank’

As one Blue Origin plan heads for the scrapyard, another is finally coming to fruition. (Port of Pensacola - Benjamin Van Der Like; Blue Origin)

Published

on

After four years of halting work, Blue Origin has fully abandoned a transport ship it once intended to convert into a landing platform for its orbital-class New Glenn rocket.

Known as Stena Freighter at the time of sale, Blue Origin purchased the ship for an undisclosed sum – likely several million dollars – sometime in mid-2018. Aside from a flashy, December 2020 re-christening ceremony in which Blue Origin owner Jeff Bezos named the vessel Jacklyn after his late mother, the private aerospace company left the ship largely untouched in a Florida port. Small teams of workers would occasionally work on retrofitting the roll-on/roll-off cargo ship for a future life as a rocket recovery asset but made very little visible progress despite working on Jacklyn for several years.

Now, a few months after a Blue Origin spokesperson first acknowledged that the company was evaluating “different options” for New Glenn booster recovery, Jacklyn has left Florida’s Port of Pensacola for the Texan Port of Brownsville, where documents show that the ship will be scrapped.

According to an unconfirmed report, Blue Origin may ultimately use the same contractors as SpaceX to turn existing barges into ocean-going rocket-landing platforms. Blue Origin had hoped that a large, keeled ship would allow it to launch New Glenn and still recover its expensive booster even if seas were stormy downrange. However, after 107 successful SpaceX Falcon booster landings on flat-bottomed barges that are exceptionally sensitive to wave conditions, just a tiny fraction of launches have been delayed by the ocean. Further, SpaceX has only lost one booster to waves, and it solved that problem by developing a relatively cheap robot. With the benefit of hindsight, it’s not hard to see why Blue Origin changed its mind.

Much like SpaceX’s next-generation Starship rocket, Blue Origin began work on its semi-reusable New Glenn rocket in the early 2010s. Jeff Bezos publicly revealed New Glenn just a few weeks before CEO Elon Musk’s long-planned September 2016 reveal of SpaceX’s next rocket, then known as the Interplanetary Transport System (ITS). Both were massive, meant to be powered by huge new methane/oxygen-fueled engines, and designed from the ground up with some degree of reusability in mind.

Advertisement

But with fairly different designs and wildly different development philosophies, the paths of Blue Origin and SpaceX have only gotten further apart over the last six years. SpaceX thoroughly redesigned its next-generation rocket multiple times before throwing out a large portion of that prior work and settling on an unexpected stainless steel variant that CEO Elon Musk christened Starship in late 2018. Further differentiating the companies, SpaceX began work on steel prototypes almost immediately and successfully built and flew a scrappy pathfinder – powered by an early version of the same Raptor engine meant for Starship – less than a year later.

SpaceX then improvised a factory out of a series of tents and began churning out and testing dozens of more refined prototypes, seven of which would go on to perform flight tests between August 2020 and May 2021. SpaceX’s last test flight ended with a full-size steel Starship prototype successfully landing after launching to an altitude of 10 kilometers (~6.2 mi). Testing slowed considerably after that success but SpaceX appears to have begun ramping up again as it begins to test a Starship (S24) and Super Heavy booster prototype (B7) that have a shot at supporting the rocket’s first orbital launch attempt.

That orbital launch debut has been more or less continuously delayed for years and is about 20 months behind a tentative schedule Musk first sketched out (albeit for a drastically different rocket design) in 2016. Technically, the same is true for Blue Origin, which also said that it intended to debut New Glenn as early as 2020. However, while SpaceX can point to the instability of Starship’s design before 2019 as a fairly reasonable excuse for delays, the general characteristics of New Glenn’s design appear to be virtually unchanged despite its many delays. The smaller rocket – 7m (23 ft) wide and 98m (322 ft) tall to Starship’s 9m (30 ft) width and ~119m (~390 ft) height – will still use traditional aluminum alloys for most of its structures, will be powered by seven BE-4 engines, will land on several deployable legs, will have an expendable upper stage powered by two BE-3U engines, and will be topped with a large composite payload fairing.

Blue Origin canceled plans for a smaller interim fairing, abandoned plans to land the booster on a moving ship, and tweaked the booster’s landing legs and a few other attributes, but New Glenn is otherwise (visibly) unchanged from its 2016 reveal. Ultimately, that makes it even stranger that Blue Origin has done practically zero integrated testing of any major New Glenn components. Only in 2022 did the company finally complete and test a New Glenn payload fairing. Blue may have also built and tested a partial booster interstage, which the New Glenn upper stage will attach and deploy from.

An early pathfinder New Glenn fairing half. (Blue Origin)

But the true star of the show, at long last, is an apparent full-scale prototype of New Glenn’s upper stage. At minimum, Blue Origin’s first ‘test tank’ (using SpaceX parlance) should allow the company to finally verify the performance of New Glenn’s aluminum tank barrel sections and domes under cryogenic (ultra-cold) conditions. It’s unclear how (or if) Blue Origin intends to complete integrated static-fire testing of New Glenn’s upper stage before the rocket’s first launch, but it’s possible that the tank it finally delivered was designed to support testing with and without engines.

For the first time ever, Blue Origin has a significant amount of New Glenn hardware to show off, ranging from an insulated aluminum test tank similar to New Glenn’s upper stage, a good number of domes and barrel sections, and even a booster engine and leg section.

Nonetheless, Blue Origin hasn’t specified what it actually plans to do with its first New Glenn test tank and it’s even less clear why it has taken the company so long to complete one. While difficult, the methods Blue Origin is using to build New Glenn’s primary structures are about as standard as they get for modern rockets. Blue Origin itself even uses the same tech to build its smaller New Shepard rockets. So does SpaceX, ULA, Boeing, Arianespace, and virtually every other manufacturer of medium-to-large rockets, including NASA’s Space Launch System (SLS) core stage, which is wider than New Glenn.

The results of those challenges (managerial, technical, or otherwise) are clear: Blue Origin is nowhere close to debuting its next-generation rocket while competitors like Arianespace and ULA are tracking towards H1 2023 debuts of their Ariane 6 and Vulcan rockets. SpaceX, who is pursuing full reusability and really only settled on the design of its larger rocket in 2019, could even be ready to attempt an orbital-class launch with Starship before the end of 2022.

Advertisement

Still, the long-awaited beginning of hardware-rich New Glenn development appears to have finally arrived, and it’s possible that Blue Origin’s first orbital-class rocket could finally start picking up momentum towards its launch debut.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla to launch in India in July with vehicles already arriving: report

Tesla is finally making serious moves toward launching in India, with showrooms opening in July, a report claims.

Published

on

Credit: Tesla

Tesla is finally bringing its business to India, a new report indicates, as the company is already shipping vehicles from China to the market where it has attempted to launch business for several years.

We first heard of Tesla planning to launch in India about a decade ago when CEO Elon Musk and Indian Prime Minister Narendra Modi met in California at the Fremont Factory in 2015.

Tesla-india-import-tax-incentive-investment

Over the years, the two have hinted that the automaker would eventually land in India, but issues with import duties have delayed Tesla’s attempts.

Now, there seems to be some serious movement in Tesla’s plans, as it has reportedly shipped the first batch of vehicles from China to India, according to Bloomberg. The outlet says these are Model Y Rear-Wheel-Drive configurations.

Tesla is also planning for other parts of the launch, like preparing for Supercharging, aftermarket parts and merchandise purchasing for vehicle owners and fans, and spare parts from various regions, including the United States, China, and the Netherlands.

The company and the Indian government must have come to some sort of agreement that was catalyzed by Musk and Modi’s meeting in February in the U.S.

It is a long time coming, and it now gives Tesla access to an incredibly vast market in India, where a very small percentage of 2024’s total automotive sales were comprised of electric vehicles.

Another interesting tidbit about the launch is that the vehicles will be coming from Gigafactory Shanghai and not Gigafactory Berlin as previously thought. Reports from other publications, like Reuters, indicated the German production facility was building vehicles for India early last year.

India has a very strict policy that favors domestic manufacturing, which is why the import duties were so high for foreign automakers looking to bring their product into the market. These duties were reduced from 110 percent to just 15 percent, as long as companies aim to invest in India and meet certain investment and sales targets.

Continue Reading

News

SpaceX and Elon Musk share insights on Starship Ship 36’s RUD

Starship Ship 36 experienced a Rapid Unscheduled Disassembly during a static fire attempt.

Published

on

Elon Musk and SpaceX provided an explanation for the Rapid Unscheduled Disassembly (RUD) of Starship Ship 36 on Wednesday. As per Musk, preliminary data suggests that a nitrogen composite overwrapped pressure vessel (COPV) in the vehicle’s payload bay failed below its proof pressure.

On Wednesday evening, Ship 36 experienced a RUD during a static fire attempt. Videos of the incident that were shared online showed Starship Ship 36 exploding into a massive fireball at its launchpad in Starbase, Texas. Images taken in the aftermath of the explosion showed significant damage to the plumbing in the area. The site’s pad structure was also destroyed.

Elon Musk shared some information immediately after the incident. In a response to a post from space enthusiast @Erdayastronaut, Musk stated that “Preliminary data suggests that a nitrogen COPV in the payload bay failed below its proof pressure.”

Musk also noted that, “If further investigation confirms that this is what happened, it is the first time ever for this design.”

SpaceX provided more insight into the incident in a post on its official website.

Advertisement

“After completing a single-engine static fire earlier this week, the vehicle was in the process of loading cryogenic propellant for a six-engine static fire when a sudden energetic event resulted in the complete loss of Starship and damage to the immediate area surrounding the stand.

“The explosion ignited several fires at the test site, which remains clear of personnel and will be assessed once it has been determined to be safe to approach. Individuals should not attempt to approach the area while safing operations continue,” SpaceX wrote in its post.

SpaceX highlighted that despite Starship Ship 36’s RUD, the incident will not result in any hazards to the surrounding communities in the Rio Grande Valley. And in a post on X, SpaceX also confirmed that everyone in the Starship team was safe and accounted for after Ship 36’s explosion.

While Ship 36’s RUD is a speed bump for the Starship program, SpaceX is a company that is known to grow stronger with every adversity. Thus, it would not be surprising if SpaceX implemented numerous improvements to Starship after this incident–improvements that would make the vehicle more reliable and safer than before.

Advertisement
Continue Reading

News

Tesla has started rolling out initial round of Robotaxi invites

Tesla is putting safety above all in its initial Robotaxi rollout.

Published

on

Credit: @BLKMDL3/X

Tesla has started rolling out an initial round of invites for its upcoming Robotaxi service in Austin, Texas.

Screenshots shared by several Tesla community members who received the invites provided a quick overview of the autonomous ride-hailing service.

As noted in a techAU report, the initial round of Robotaxi service invites has gone to longtime Tesla owners and active members of the EV community. These include owners such as @SawyerMerritt, @BLKMDL3, @WholeMarsBlog, @ItsKimJava, and @HerbertOng, all of whom shared screenshots of the invitation that Tesla has sent about the upcoming service.

You’re Invited to Early Access of Tesla Robotaxi!

The Future is Now! You’re invited to Early Access of Tesla’s Robotaxi service in Austin, TX!

Advertisement

As an Early Access rider, you can be among the first to use our new Robotaxi App and experience an autonomous ride within our geofenced area in Austin. Through this exclusive preview, you’ll have the opportunity to provide valuable feedback on our Robotaxi service.

Based on Tesla’s message, it appears that participation in the service would be strictly invite-only for now. Participants must also download Tesla’s dedicated Robotaxi App to hail a ride. Rides can also be requested and initiated to and from any location within a geofenced area of Austin.

The robotaxi service will be available from 6:00 AM to 12:00 AM, seven days a week, though these hours may change depending on factors such as inclement weather. Interestingly enough, Tesla is inviting the first participants of the Robotaxi program to share photos and videos of their experience with the service.

While the vehicles themselves are autonomous and would operate without human input, the Robotaxis would still be accompanied by a Tesla staff member to monitor the vehicle. This strategy suggests that Tesla is really putting safety above all in its initial Robotaxi rollout.

Advertisement
Continue Reading

Trending