Connect with us

News

DeepSpace: NASA’s Europa Clipper suffers under SLS, Moon landers win funding, and Russia talks lunar ambitions

Published

on

NASA's ambitious and exciting Europa Clipper mission is being held back by the joint NASA-Congress SLS rocket. (NASA/Teslarati)

Eric Ralph · June 4th, 2019

Welcome to the latest edition of DeepSpace! Each week, Teslarati space reporter Eric Ralph hand-crafts this newsletter to give you a breakdown of what’s happening in the space industry and what you need to know. To receive this newsletter (and others) directly and join our member-only Slack group, give us a 3-month trial for just $5.


In this week’s analysis, there is simply too much going on to focus on any single overarching theme. NASA awarded ~$250M to fund three commercial Moon landers, Russia revealed an impossibly ambitious schedule for its conceptual crewed Moon program, and NASA’s Office of the Inspector General (OIG) released a report that did not look kindly on the management of the Europa Clipper spacecraft’s supposed plans for an SLS rocket launch.

While it is increasingly clear that the 2020s are likely to be the most exciting period of spaceflight activity in decades, it remains equally clear that most of the world’s space exploration – despite the incredible results often produced – is poorly and inefficiently managed. Upsets may well be served by commercial hopefuls like SpaceX, Blue Origin, iSpace, and others, but we are likely set to witness another decade or so of wasteful, results-phobic human spaceflight efforts lead on a wild goose chase after NASA’s Moon return ambitions. If it ends up being anything like the SLS rocket and Orion spacecraft it is being artificially locked to, the Moon return may eventually accomplish something approximately half a decade behind schedule after vacuuming up at least $10-20B of federal funding.

At the same time, the robotic exploration expertise of NASA, ESA, Japan (JAXA), China (CNSA), India (ISRO), and Russia (Roscosmos) will be thrown at a bevy of spacecraft and landers with destinations throughout the solar system.

Advertisement

Europa Clipper deserves better ‘sails’

  • As of now, Congress has “mandated” that Europa Clipper and a planned Lander follow-up both launch on NASA’s Space Launch System (SLS) rockets. This was a political ploy by long-time supporter John Culberson (now a former US representative) meant to gain the support of Congressional gatekeepers focused on preserving SLS and Orion-related pork that feeds into their legislative districts or states (Sen. Shelby, Sen. Nelson, and others).
  • Developed by Lockheed Martin with the support of the European Space Agency (ESA), the Orion spacecraft is essentially an overweight, underpowered modern version of NASA’s Apollo Command and Service Module (CSM). Despite its mediocre capabilities, the spacecraft could theoretically be useful for NASA’s crewed exploration ambitions.
    • Sadly, Orion has been almost inextricably linked to NASA’s SLS rocket, built (for the most part) by Boeing and Aerojet Rocketdyne. Originally known as Ares V, the comparatively downsized SLS has always been meant to launch extremely large payloads. In theory, even the early SLS Block 1 (likely the only variant that will ever fly) would be capable of delivering ~25 metric tons to Mars and 6.3 mT directly to Jupiter.
  • That performance would also drastically cut the amount of time it takes Europa Clipper to travel from Earth to Jupiter from 6-7 years to about 3 years.
  • Hilariously, despite both Europa Clipper and SLS having been in development for years and the latter being legally required to launch the former, NASA still hasn’t verified (with certainty) that SLS Block 1 is actually capable of launching EC directly to Jupiter, the only benefit of SLS being the 3 years of time saved by a direct trajectory.
  • Even worse, despite mission delays that pushed Europa Clipper’s launch target from 2022 to 2023, NASA has yet to actually order new SLS boosters beyond the first two, assigned to Orion missions NET 2021 and 2022.
    • As NASA OIG notes, according to past estimates from NASA officials, the agency would need a minimum of 52 months (4.3 years) of lead time for Boeing and Aerojet Rocketdyne to build new SLS boosters. In other words, NASA would have had to order new boosters in September 2018 (8 months ago) for Europa Clipper to have a chance of launching on SLS in 2023.
  • Due to all of this absurd and avoidable uncertainty, large amounts of money and time are being wasted designing Europa Clipper to essentially be launcher-agnostic, able to fly on Falcon Heavy, Delta IV Heavy, or SLS. At this rate, it’s not even clear if a third SLS will be ready to launch Europa Clipper in 2024, barring a miraculously perfect performance during its launch debut (“Artemis-1”, formerly EM-1).

Dispatch from the Moon (bureaucracy)

  • Earlier this week, NASA announced its first truly Moon landing-focused contracts, awarding a total of $253M to OrbitBeyond, Astrobotic, and Intuitive Machines for commercially-developed Moon landers that could be ready for lunar landings as early as September 2020, July 2021, and July 2021, respectively.
    • Astrobotic and Intuitive Machines aim to deliver 90 kg and 100 kg of payload to the Moon’s surface, while OrbitBeyond is targeting ~40 kg despite receiving ~$25M more from NASA. Regardless, it has to be said that ~$250M is extremely cost-effective for the 230 kg (510 lb) worth of payloads it could deliver to the Moon. For comparison, in 2015, NASA purchased a single Delta IV Heavy launch (for its Parker Solar Probe) at a cost of almost $390M
    • Not only does that $250M include launch costs (two or even three of which will likely end up as copassengers on Falcon 9 launches), but it includes delivery to the surface of the Moon.
  • Additionally, an unknown proportion of that funding has clearly been directed towards the development and maturation of unflown and (mostly) unbuilt lunar landers, all of which could potentially offer even more affordable lunar delivery services once development is finished.
  • Finally, Russian space agency Roscosmos apparently has plans (or at least a Powerpoint) to land cosmonauts on the Moon as early as 2030. To accomplish that incredibly ambitious feat, Russia would effectively need to develop three entirely new rockets – two of which are far larger than anything Russia has built since the fall of the USSR – and a brand new crew and deep space-capable spacecraft (Federation).
  • The ambition is undeniably inspiring and could create a truly fascinating race-that-isn’t-really-a-race back to the Moon. However, the reality is that Russia as a country and economy is struggling, and those difficulties are obvious in Roscosmos – woefully underfunded and eternally tossed about as a political puck and source of easy embezzlement.
    • A Soyuz spacecraft launched to the ISS last year was found to have a literal hole in it, the likely result of sloppy manufacturing and nonexistent quality control. A few months later, a Soyuz 1.2 rocket failed mid-flight while launching a trio of astronauts, triggering the first human spaceflight abort/failure in almost two decades.
    • All three astronauts were safely recovered but those two failures alone suggest that Russia has some soul-searching a budget-tweaking to do before it has any chance of successfully (let alone safely) undertaking its ambitious lunar program.
Thanks for being a Teslarati Reader! Become a member today to receive an issue of DeepSpace in your inbox every week!

– Eric

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Published

on

Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.

The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.

Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:

Advertisement

Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.

Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:

Advertisement

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.

In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.

While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.

Advertisement
Continue Reading

Investor's Corner

Tesla Earnings Call: Top 5 questions investors are asking

Published

on

(Credit: Tesla)

Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.

The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.

Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.

There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:

SpaceX IPO is coming, CEO Elon Musk confirms

Advertisement
  1. You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
    1. Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
  2. When is FSD going to be 100% unsupervised?
    1. Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
  3. What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
    1. Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
  4. Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
    1. Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
  5. Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
    1. Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.

Tesla will have its Earnings Call on Wednesday, January 28.

Continue Reading

Elon Musk

Elon Musk shares incredible detail about Tesla Cybercab efficiency

Published

on

(Credit: Tesla North America | X)

Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.

ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.

The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.

Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.

ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest

This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.

The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.

Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.

Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.

Advertisement

It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Continue Reading