Connect with us

News

DeepSpace: NASA’s Europa Clipper suffers under SLS, Moon landers win funding, and Russia talks lunar ambitions

Published

on

NASA's ambitious and exciting Europa Clipper mission is being held back by the joint NASA-Congress SLS rocket. (NASA/Teslarati)

Eric Ralph · June 4th, 2019

Welcome to the latest edition of DeepSpace! Each week, Teslarati space reporter Eric Ralph hand-crafts this newsletter to give you a breakdown of what’s happening in the space industry and what you need to know. To receive this newsletter (and others) directly and join our member-only Slack group, give us a 3-month trial for just $5.


In this week’s analysis, there is simply too much going on to focus on any single overarching theme. NASA awarded ~$250M to fund three commercial Moon landers, Russia revealed an impossibly ambitious schedule for its conceptual crewed Moon program, and NASA’s Office of the Inspector General (OIG) released a report that did not look kindly on the management of the Europa Clipper spacecraft’s supposed plans for an SLS rocket launch.

While it is increasingly clear that the 2020s are likely to be the most exciting period of spaceflight activity in decades, it remains equally clear that most of the world’s space exploration – despite the incredible results often produced – is poorly and inefficiently managed. Upsets may well be served by commercial hopefuls like SpaceX, Blue Origin, iSpace, and others, but we are likely set to witness another decade or so of wasteful, results-phobic human spaceflight efforts lead on a wild goose chase after NASA’s Moon return ambitions. If it ends up being anything like the SLS rocket and Orion spacecraft it is being artificially locked to, the Moon return may eventually accomplish something approximately half a decade behind schedule after vacuuming up at least $10-20B of federal funding.

At the same time, the robotic exploration expertise of NASA, ESA, Japan (JAXA), China (CNSA), India (ISRO), and Russia (Roscosmos) will be thrown at a bevy of spacecraft and landers with destinations throughout the solar system.

Europa Clipper deserves better ‘sails’

  • As of now, Congress has “mandated” that Europa Clipper and a planned Lander follow-up both launch on NASA’s Space Launch System (SLS) rockets. This was a political ploy by long-time supporter John Culberson (now a former US representative) meant to gain the support of Congressional gatekeepers focused on preserving SLS and Orion-related pork that feeds into their legislative districts or states (Sen. Shelby, Sen. Nelson, and others).
  • Developed by Lockheed Martin with the support of the European Space Agency (ESA), the Orion spacecraft is essentially an overweight, underpowered modern version of NASA’s Apollo Command and Service Module (CSM). Despite its mediocre capabilities, the spacecraft could theoretically be useful for NASA’s crewed exploration ambitions.
    • Sadly, Orion has been almost inextricably linked to NASA’s SLS rocket, built (for the most part) by Boeing and Aerojet Rocketdyne. Originally known as Ares V, the comparatively downsized SLS has always been meant to launch extremely large payloads. In theory, even the early SLS Block 1 (likely the only variant that will ever fly) would be capable of delivering ~25 metric tons to Mars and 6.3 mT directly to Jupiter.
  • That performance would also drastically cut the amount of time it takes Europa Clipper to travel from Earth to Jupiter from 6-7 years to about 3 years.
  • Hilariously, despite both Europa Clipper and SLS having been in development for years and the latter being legally required to launch the former, NASA still hasn’t verified (with certainty) that SLS Block 1 is actually capable of launching EC directly to Jupiter, the only benefit of SLS being the 3 years of time saved by a direct trajectory.
  • Even worse, despite mission delays that pushed Europa Clipper’s launch target from 2022 to 2023, NASA has yet to actually order new SLS boosters beyond the first two, assigned to Orion missions NET 2021 and 2022.
    • As NASA OIG notes, according to past estimates from NASA officials, the agency would need a minimum of 52 months (4.3 years) of lead time for Boeing and Aerojet Rocketdyne to build new SLS boosters. In other words, NASA would have had to order new boosters in September 2018 (8 months ago) for Europa Clipper to have a chance of launching on SLS in 2023.
  • Due to all of this absurd and avoidable uncertainty, large amounts of money and time are being wasted designing Europa Clipper to essentially be launcher-agnostic, able to fly on Falcon Heavy, Delta IV Heavy, or SLS. At this rate, it’s not even clear if a third SLS will be ready to launch Europa Clipper in 2024, barring a miraculously perfect performance during its launch debut (“Artemis-1”, formerly EM-1).

Dispatch from the Moon (bureaucracy)

  • Earlier this week, NASA announced its first truly Moon landing-focused contracts, awarding a total of $253M to OrbitBeyond, Astrobotic, and Intuitive Machines for commercially-developed Moon landers that could be ready for lunar landings as early as September 2020, July 2021, and July 2021, respectively.
    • Astrobotic and Intuitive Machines aim to deliver 90 kg and 100 kg of payload to the Moon’s surface, while OrbitBeyond is targeting ~40 kg despite receiving ~$25M more from NASA. Regardless, it has to be said that ~$250M is extremely cost-effective for the 230 kg (510 lb) worth of payloads it could deliver to the Moon. For comparison, in 2015, NASA purchased a single Delta IV Heavy launch (for its Parker Solar Probe) at a cost of almost $390M
    • Not only does that $250M include launch costs (two or even three of which will likely end up as copassengers on Falcon 9 launches), but it includes delivery to the surface of the Moon.
  • Additionally, an unknown proportion of that funding has clearly been directed towards the development and maturation of unflown and (mostly) unbuilt lunar landers, all of which could potentially offer even more affordable lunar delivery services once development is finished.
  • Finally, Russian space agency Roscosmos apparently has plans (or at least a Powerpoint) to land cosmonauts on the Moon as early as 2030. To accomplish that incredibly ambitious feat, Russia would effectively need to develop three entirely new rockets – two of which are far larger than anything Russia has built since the fall of the USSR – and a brand new crew and deep space-capable spacecraft (Federation).
  • The ambition is undeniably inspiring and could create a truly fascinating race-that-isn’t-really-a-race back to the Moon. However, the reality is that Russia as a country and economy is struggling, and those difficulties are obvious in Roscosmos – woefully underfunded and eternally tossed about as a political puck and source of easy embezzlement.
    • A Soyuz spacecraft launched to the ISS last year was found to have a literal hole in it, the likely result of sloppy manufacturing and nonexistent quality control. A few months later, a Soyuz 1.2 rocket failed mid-flight while launching a trio of astronauts, triggering the first human spaceflight abort/failure in almost two decades.
    • All three astronauts were safely recovered but those two failures alone suggest that Russia has some soul-searching a budget-tweaking to do before it has any chance of successfully (let alone safely) undertaking its ambitious lunar program.
Thanks for being a Teslarati Reader! Become a member today to receive an issue of DeepSpace in your inbox every week!

– Eric

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla rolls out new Supercharging safety feature in the U.S.

Published

on

tesla's nacs charging connector
Credit: Tesla

Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.

It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.

The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.

With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:

“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”

The feature was first spotted by Not a Tesla App.

This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.

For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.

Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.

This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.

Advertisement
Continue Reading

News

LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Published

on

Credit: Tesla Optimus/X

A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Humanoid robot battery deals

LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.

China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.

LF Energy Solution vs rivals

According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.

LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.

Continue Reading

News

Tesla receives approval for FSD Supervised tests in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden in a press release.

Published

on

Credit: Grok Imagine

Tesla has received regulatory approval to begin tests of its Full Self-Driving Supervised system on public roads in Sweden, a notable step in the company’s efforts to secure FSD approval for the wider European market. 

FSD Supervised testing in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden following cooperation with national authorities and local municipalities. The approval covers the Swedish Transport Administration’s entire road network, as well as urban and highways in the Municipality of Nacka.

Tesla shared some insights into its recent FSD approvals in a press release. “The approval shows that cooperation between authorities, municipalities and businesses enables technological leaps and Nacka Municipality is the first to become part of the transport system of the future. The fact that the driving of the future is also being tested on Swedish roads is an important step in the development towards autonomy in real everyday traffic,” the company noted. 

With approval secured for FSD tests, Tesla can now evaluate the system’s performance in diverse environments, including dense urban areas and high-speed roadways across Sweden, as noted in a report from Allt Om Elbil. Tesla highlighted that the continued development of advanced driver assistance systems is expected to pave the way for improved traffic safety, increased accessibility, and lower emissions, particularly in populated city centers.

Tesla FSD Supervised Europe rollout

FSD Supervised is already available to drivers in several global markets, including Australia, Canada, China, Mexico, New Zealand, and the United States. The system is capable of handling city and highway driving tasks such as steering, acceleration, braking, and lane changes, though it still requires drivers to supervise the vehicle’s operations.

Tesla has stated that FSD Supervised has accumulated extensive driving data from its existing markets. In Europe, however, deployment remains subject to regulatory approval, with Tesla currently awaiting clearance from relevant authorities.

The company reiterated that it expects to start rolling out FSD Supervised to European customers in early 2026, pending approvals. It would then be unsurprising if the company secures approvals for FSD tests in other European territories in the coming months. 

Continue Reading