Connect with us

Space

NASA gears up Mars rover for perfect 20/20 ‘SuperCam’ vision ahead of mission to red planet

The Mars Perseverance rover is almost ready for its July launch. Credit: NASA

Published

on

NASA engineers are busy preparing the agency’s next Mars rover for its upcoming journey to the red planet. The six-wheeled robot will scour the Martian surface to look for signs of life. Deemed essential by NASA’s administrator, the mission is progressing as planned in order to meet a July launch.

The Perseverance Mars rover will land on Mars in February 2021, touching down in an ancient river bed called Jezero Crater. The 28-mile-wide crater is the site of an ancient river delta, and as such, scientists believe it could harbor fossilized life. That’s because the region is home to mineral deposits like hydrated silica, which is a preservative material here on Earth.

To help it search out key mineral deposits, the rover is packing a suite of scientific instruments, including some specialized cameras. The rover was built at NASA’s Jet Propulsion Laboratory in California but was shipped to its Florida launch site earlier this year.

NASA’s Mars2020 rover will explore Jezero Crater in search of life. Credit: NASA/JPL-Caltech

Since its arrival, engineers have begun reassembling the rover and preparing it for flight. It will not be flying solo to the red planet, but instead, will be accompanied by the first interplanetary helicopter. Approximately the size of a softball, the Mars helicopter has passed pre-launch testing and was recently installed on the belly of the rover.

The rover, however, still has a few more milestones to complete before its ready to be tucked into its aeroshell and loaded into the launch vehicle. To that end, the rover recently had its vision tested.

Perseverance is packing multiple cameras that have a range of imaging capabilities from wide-angle cameras capable of capturing sweeping vistas to a narrow-angle, high-resolution camera capable of zooming in on details on the Martian surface.

Advertisement

The rover will use the SuperCam (along with its laser and spectrometers) to examine Martian rocks and soil, looking for organic compounds that could indicate past life on Mars.

So how does one test a rover’s vision? With a giant grid of dots.

Engineer Chris Chatellier stands next to a target board with 1,600 dots. The committee was one of several used on July 23, 2019, in the Spacecraft Assembly Facility’s High Bay 1 at NASA’s Jet Propulsion Laboratory in Pasadena, California, to calibrate the forward-facing cameras on the Mars 2020 rover. Credits: NASA/JPL-Caltech

The rover’s vision was first tested back in July 2019 at the Jet Propulsion Lab and then rechecked once the cameras were installed at NASA’s Kennedy Space Center in Florida. The rover’s main camera, called the SuperCam, is installed on the rover’s head. It appears as a large circular opening, and this is the lens. Underneath it are two grey boxes that are two Mastcam-Z-imagers, and on the outside of those boxes are two more cameras used for navigation.

“We completed the machine-vision calibration of the forward-facing cameras on the rover,” Justin Maki, chief engineer for imaging and the imaging scientist for Mars 2020 at JPL, said during the test. “This measurement is critical for accurate stereo vision, which is an important capability of the vehicle.”

Anatomy of a Mars2020 rover. Credit: NASA/JPL-Cal-tech

To calibrate the imagers, target boards that feature grids of dots were imaged and placed at distances ranging from 1 to 44 yards (1 to 40 meters) away. Those boards were used to confirm that the cameras meet the project’s requirements for resolution and geometric accuracy.

“We tested every camera on the front of the rover chassis and also those mounted on the mast,” Maki said. “Characterizing the geometric alignment of all these images is important for driving the vehicle on Mars, operating the robotic arm, and accurately targeting the rover’s laser.”

But the work isn’t done yet, the imagers on Perseverance’s body and arm will happen in the coming weeks.

Advertisement

 

 

Advertisement
Comments

News

SpaceX set to launch Axiom’s mission for diabetes research on the ISS

Axiom’s Ax-4 will test CGMs & insulin stability in microgravity—potentially reshaping diabetes care for Earth & future astronauts.

Published

on

(Credit: SpaceX)

Axiom Space’s Ax-4 mission is set to launch on a SpaceX Falcon 9 rocket. Ax-4 will advance diabetes research in microgravity, marking a milestone for astronaut health.

Axiom Space’s fourth crewed mission is scheduled to launch with SpaceX on May 29 from NASA’s Kennedy Space Center in Florida. The Ax-4 mission will carry a diverse crew and a record-breaking scientific payload to the International Space Station (ISS).

The Ax-4 crew is led by Axiom’s Peggy Whitson and includes Shubhanshu Shukla from India, Sławosz Uznański from the European Space Agency, and Tibor Kapu from Hungary. The mission represents firsts for India, Hungary, and Poland, with Uznański being Poland’s first astronaut in over 40 years.

Ax-4 will conduct nearly 60 science investigations from 31 countries during its two-week ISS stay. A key focus is the “Suite Ride” initiative, a collaboration with Burjeel Holdings to study diabetes management in microgravity.

“The effort marks a significant milestone in the long-term goal of supporting future astronauts with insulin-dependent diabetes (IDDM), a condition historically deemed disqualifying for spaceflight,” Axiom noted. The mission will test Continuous Glucose Monitors (CGMs) and insulin stability to assess their performance in space.

Advertisement

Axiom explained that testing the behavior of CGMs and insulin delivery technologies in microgravity and observing circadian rhythm disruption could help diabetes experts understand how CGMs and insulin pens can improve diabetes monitoring and care in remote or underserved areas on Earth. The research could benefit diabetes management in isolated regions like oil rigs or rural areas.

The mission’s findings on insulin exposure and CGM performance could pave the way for astronauts with diabetes to safely participate in spaceflight. As Axiom and SpaceX push boundaries, Ax-4’s diabetes research underscores the potential for space-based innovations to transform healthcare on Earth and beyond.

Continue Reading

Elon Musk

EU considers SES to augment Starlink services

The EU considers funding SES to support Starlink. With MEO satellites already serving NATO, SES could be key in Europe’s space autonomy push.

Published

on

EU-ses-starlink-augment
(Credit: SES)

European satellite company SES is negotiating with the European Union (EU) and other governments to complement SpaceX’s Starlink, as Europe seeks home-grown space-based communication solutions. The talks aim to bolster regional resilience amid growing concerns over reliance on foreign providers.

In March, the European Commission contacted SES and France’s Eutelsat to assess their potential role if American-based Starlink access for Ukraine was disrupted. The European Commission proposed funding EU-based satellite operators to support Kyiv. Ukraine is considering alternatives to Starlink over concerns about Elon Musk’s reliability.

Arthur De Liedekerke of Rasmussen Global warned, “Elon Musk is, in fact, the guardian of Ukraine’s connectivity on the battlefield. And that’s a strategic vulnerability.” However, SpaceX’s Starlink constellation is leagues ahead of any competition in the EU.

“Now the discussions are much more strategic in nature. They’re much more mid-term, long-term. And what we’re seeing is all of the European governments are serious about increasing their defense spending. There are alternatives, not to completely replace Starlink, that’s not possible, but to augment and complement Starlink,” SES CEO Adel Al-Saleh told Reuters.

Advertisement

SES operates about 70 satellites, including over 20 medium Earth orbit (MEO) units at 8,000 km. The company provides high-speed internet for government, military, and underserved areas. It plans to expand its MEO fleet to 100, enhancing secure communications for NATO and the Pentagon.

“The most significant demand (for us) is European nations investing in space, much more than what they did before,” Al-Saleh said.

Competition from Starlink, Amazon’s Kuiper, and China’s SpaceSail, with their extensive low-Earth orbit constellations, underscores Europe’s push for independence.

“It is not right to say they just want to avoid Starlink or the Chinese. They want to avoid being dependent on one or two providers. They want to have flexibility,” Al-Saleh noted.

SES’s discussions reflect Europe’s strategic shift toward diversified satellite networks, balancing reliance on Starlink with regional capabilities. As governments ramp up defense spending, SES aims to play a pivotal role in complementing global providers, ensuring robust connectivity for military and civilian needs across the continent.

Advertisement
Continue Reading

News

Amazon launches Kuiper satellites; Can it rival Starlink?

With 27 satellites in orbit, Amazon kicks off its $10B plan to deliver global broadband. Can Bezos’ Kuiper take on Musk’s Starlink?

Published

on

amazon-kuiper-satellite-starlink-rival
(Credit: Amazon)

Amazon’s Project Kuiper launched its first 27 satellites on Monday, marking the start of a $10 billion effort that could compete with SpaceX’s Starlink with a global broadband internet network.

Amazon’s Kuiper satellites launched aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Florida. Project Kuiper’s recent launch is the initial step toward deploying Amazon’s 3,236 satellites for low-Earth orbit connectivity. Amazon’s satellite launch was initially set for April 9 but was delayed due to bad weather.  

Now that the Kuiper satellites have been launched, Amazon is expected to publicly confirm contact with the satellites from its mission operations center in Redmond, Washington. The company aims to start offering Kuiper services to customers later this year. Project Kuiper was unveiled in 2019 and targets consumers, businesses, and governments who need reliable internet service, similar to Starlink.

Amazon has a deadline from the U.S. Federal Communications Commission to deploy 1,618 satellites by mid-2026. Analysts suggest the company may require an extension to its Kuiper satellite deployment deadline due to the project’s year-long delay from its planned 2024 start.

United Launch Alliance could conduct up to five more Kuiper missions this year, according to ULA CEO Tory Bruno. Amazon noted in a 2020 FCC filing that Kuiper services could begin with 578 satellites, initially covering northern and southern regions.

Advertisement

Kuiper’s launch pits Amazon against SpaceX’s Starlink and telecom giants like AT&T and T-Mobile, with a focus on underserved rural areas.

“There’s an insatiable demand for the internet,” Amazon Executive Chairman Jeff Bezos told Reuters in January. “There’s room for lots of winners there. I predict Starlink will continue to be successful, and I predict Kuiper will be successful as well.”

Global interest in satellite alternatives is rising. Ukraine is exploring Starlink alternatives with the European Union (EU), driven by concerns over Elon Musk. Germany’s military, Bundeswehr, also plans its own constellation to ensure independent communications. However, like Amazon’s Kuiper Project, EU options lag behind Starlink.

Amazon’s consumer expertise and cloud computing infrastructure give Kuiper a competitive edge despite Starlink’s market lead. As Kuiper ramps up launches, its success could reshape broadband access while challenging SpaceX’s dominance in the satellite internet race.

Advertisement
Continue Reading

Trending