Connect with us

News

Relativity’s first 3D-printed rocket aims to debut a new rocket fuel

Published

on

Relativity can almost taste the vacuum of space. A substantial amount of work remains, but the startup continues to defy expectations with its relentless and methodical push towards the first orbital launch of a 3D-printed rocket.

Founded in 2015, the Los Angeles-based aerospace company has taken its few years of obligatory delays in stride while pursuing a 2020 debut for its (relatively) small Terran 1 rocket. In a world with dozens of serious rocket startups, missing one’s initial launch target is practically a rite of passage – the path to orbit is never as straight and bump-free as the highway on-ramps that are often promised in pitch decks. Relativity Space, however, is no average rocket startup.

Save for SpaceX, which operates in a league of its own, no other private rocket startup has come close to matching the $1.3 billion Relativity has raised to develop Terran 1 and the much larger Terran R. More importantly, in a recent interview with Aviation Week, CEO Tim Ellis (a former Blue Origin engineer) revealed that the company could be “weeks away” from the first launch of Terran 1, a rocket that is 85% 3D-printed by mass and could simultaneously debut a new kind of rocket fuel.

A small Florida launch pad is abuzz with activity as Relativity Space speeds towards its first 3D-printed rocket launch. (Richard Angle)

Once fully assembled, Terran 1 – weighing around 9.3 tons (~20,500 lb) empty and measuring 33.5 meters (110 ft) tall – will be the largest metal 3D-printed object in the history of the technology. From that perspective, it’s hardly surprising that Relativity Space is a few years behind schedule. In fact, it’s odd that the startup isn’t more delayed, and it’s even more impressive that Terran 1’s first launch campaign has gone as smoothly as it has.

Slow, Smooth and Fast

Terran 1 Flight 1’s booster stage and upper stage both arrived at the company’s leased Cape Canaveral Space Force Station LC-16 pad sometime in May 2022. Terran 1’s first stage came directly from the California factory. The second stage (S2), however, first shipped to a Mississippi test stand a few months prior and, on its first try, completed a full-duration multi-minute static fire test known as a mission duty cycle (MDC) – about as close as it’s possible to get to replicating orbital upper stage operations on the ground. The flawless MDC was preceded by a number of simpler precursor tests, of course, but the rocket performed more or less as expected throughout the entire qualification program. If Terran’s second stage ignites again, it’ll be at the edge of space.

Terran 1’s 3D-printed nosecone and second stage patiently await the end of first stage testing. (Richard Angle)

Since June, the critical path for Terran 1’s launch debut has thus been qualifying the first finished Terran booster. Rather than modify its Mississippi test facilities, Relativity decided to temporarily modify its heavily upgraded LC-16 pad to support booster qualification testing. Thanks to the heroic work of a shockingly small team of five people, the pad was ready to kick off testing as soon as the Terran 1 booster arrived in Florida. Even more surprisingly, senior manager Lorenzo Locante says that LC-16 – practically a new pad after Relativity’s extensive modifications – has “performed perfectly” during every booster qualification test attempted thus far.

That testing has included pneumatic proofing (an ambient-temperature gas pressure test), possible cryogenic proof tests, multiple rounds of propellant loading, preignition testing of its nine Aeon engines, and multiple spin-start tests (the last step before static fire testing) with the same engines. Given that LC-16 and Terran 1 must handle cryogenic oxidizer (liquid oxygen) and cryogenic fuel (liquid methane), which can easily create a flammable and bomb-like mixture of gases from even the smallest of leaks, it’s difficult to emphasize just how difficult it is to ensure that a complex launch pad and rocket perform nominally during their first joint testing.

Advertisement
Terran 1’s booster prepares for static fire testing on July 12th. (Richard Angle)
Terran 1’s first nine-engine spin-start test, July 21st. (Relativity)

According to engineers onsite during a private Teslarati tour of Relativity’s Florida launch facilities, Terran 1 S1’s next goal is to fully ignite its Aeon engines. After one or more successful static fires, the booster will be integrated with the upper stage and nosecone for a final full-duration static fire test that will also double as a full wet dress rehearsal (WDR). Testing the fully-integrated Terran 1 rocket will only be possible once LC-16’s full strongback and launch mount (also known as a transporter/erector) is completed, but that final piece of the puzzle should be ready any day now.

De Terra Ad Astra

The coming weeks will likely be some of the company’s riskiest and most difficult yet. If the rocket and LC-16 continue to operate as smoothly as they have been, however, there’s a nonzero chance that Terran 1 could beat the likes of SpaceX (Starship), Blue Origin (New Glenn), and the United Launch Alliance (Vulcan Centaur) to the punch to become the first methane and oxygen-fueled rocket in history to attempt an orbital launch.*

*While SpaceX’s Starship is technically the first large-scale suborbital methalox rocket to attempt (and complete) a launch, there has never been an orbital methalox launch attempt.

Capable of carrying up to 1.25 tons (~2750 lb) to low Earth orbit for as little as $12 million, Terran 1 also has a shot at becoming the first new privately-developed 1-ton-class rocket of any kind to successfully reach orbit. On that front, though, Relativity is in a neck-and-neck race with Firefly Aerospace and ABL Space, both of which intend to launch similarly-sized rockets at some point in the next few months. It’s never been less clear who will cross the finish line first but one would be hard-pressed to count Relativity out.

Relativity’s Launch Control Center will support Terran 1’s first booster static fire test in the very near future. (Richard Angle)

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model Y may gain an extra 90 miles of range with Panasonic’s next-gen battery

The Japanese company is pursuing an anode-free design.

Published

on

Credit: Tesla Manufacturing

Panasonic is developing a new high-capacity EV battery that could potentially extend the range of a Tesla Model Y by 90 miles. 

The Japanese company, one of Tesla’s key battery suppliers, is pursuing an anode-free design that it says could deliver a “world-leading” level of capacity by the end of 2027.

Panasonic’s anode-free design

The technology Panasonic is pursuing would eliminate the anode during the manufacturing process, as noted in a Reuters report. By freeing up space for more active cathode materials such as nickel, cobalt, and aluminum, the Japanese company expects a 25% increase in capacity without expanding battery size. 

That could allow Tesla’s Model Y to gain an estimated 145 kilometers (90 miles) of additional range if equipped with a battery that matches its current pack’s size. At the same time, Panasonic could use smaller, lighter batteries to achieve the Model Y’s current range. 

Panasonic also aims to reduce reliance on nickel, which remains one of the more costly raw materials. A senior executive previewed the initiative to reporters ahead of a scheduled presentation by Panasonic Energy’s technology chief, Shoichiro Watanabe.

Advertisement

Tesla implications

The breakthrough, if achieved, could strengthen Panasonic’s position as Tesla’s longest-standing battery partner at a time when the automaker is preparing to enter an era of extreme scale driven by high-volume products like the Cybercab and Optimus.

Elon Musk has stated that products like Optimus would be manufactured at very high scale, so it would likely be an all-hands-on-deck situation for the company’s suppliers.

Panasonic did not share details on production costs or how quickly the new batteries might scale for commercial applications. That being said, the Japanese supplier has long been a partner of Tesla, so it makes sense for the company to also push for the next generation of battery innovation while the EV maker pursues even more lofty ambitions.

Continue Reading

Elon Musk

Tesla called ‘biggest meme stock we’ve ever seen’ by Yale associate dean

Published

on

Credit: Tesla

Tesla (NASDAQ: TSLA) is being called “the biggest meme stock we’ve ever seen” by Yale School of Management Senior Associate Dean Jeff Sonnenfeld, who made the comments in a recent interview with CNBC.

Sonnenfeld’s comments echo those of many of the company’s skeptics, who argue that its price-to-earnings ratio is far too high when compared to other companies also in the tech industry. Tesla is often compared to companies like Apple, Nvidia, and Microsoft when these types of discussions come up.

Fundamentally, yes, Tesla does trade at a P/E level that is significantly above that of any comparable company.

However, it is worth mentioning that Tesla is not traded like a typical company, either.

Here’s what Sonnenfeld said regarding Tesla:

“This is the biggest meme stock we’ve ever seen. Even at its peak, Amazon was nowhere near this level. The PE on this, well above 200, is just crazy. When you’ve got stocks like Nvidia, the price-earnings ratio is around 25 or 30, and Apple is maybe 35 or 36, Microsoft around the same. I mean, this is way out of line to be at a 220 PE. It’s crazy, and they’ve, I think, put a little too much emphasis on the magic wand of Musk.”

Many analysts have admitted in the past that they believe Tesla is an untraditional stock in the sense that many analysts trade it based on narrative and not fundamentals. Ryan Brinkman of J.P. Morgan once said:

“Tesla shares continue to strike us as having become completely divorced from the fundamentals.”

Dan Nathan, another notorious skeptic of Tesla shares, recently turned bullish on the stock because of “technicals and sentiment.” He said just last week:

“I think from a trading perspective, it looks very interesting.”

Nathan said Tesla shares show signs of strength moving forward, including holding its 200-day moving average and holding against current resistance levels.

Sonnenfeld’s synopsis of Tesla shares points out that there might be “a little too much emphasis on the magic wand of Musk.”

Elon Musk just bought $1 billion in Tesla stock, his biggest purchase ever

This could refer to different things: perhaps his recent $1 billion stock buy, which sent the stock skyrocketing, or the fact that many Tesla investors are fans and owners who do not buy and sell on numbers, but rather on news that Musk might report himself.

Tesla is trading around $423.76 at the time of publication, as of 3:25 p.m. on the East Coast.

Continue Reading

News

Tesla makes big change to Full Self-Driving doghouse that drivers will like

Now, it is changing the timeframe of which strikes will be removed, cutting it in half. The strikes will be removed every 3.5 days, as long as no strikes are received during the time period.

Published

on

tesla cabin facing camera
Tesla's Cabin-facing camera is used to monitor driver attentiveness. (Credit: Andy Slye/YouTube)

Tesla is making a big change to its Full Self-Driving doghouse that drivers will like.

The doghouse is a hypothetical term used to describe the penalty period that Tesla applies to drivers who receive too many infractions related to distracted driving.

Previously, Tesla implemented a seven-day ban on the use of Full Self-Driving for those who received five strikes in a vehicle equipped with a cabin camera and three strikes for those without a cabin camera.

It also forgave one strike per week of Full Self-Driving use, provided the driver did not receive any additional strikes during the seven-day period.

Now, it is changing the timeframe of which strikes will be removed, cutting it in half. The strikes will be removed every 3.5 days, as long as no strikes are received during the time period.

The change was found by Not a Tesla App, which noticed the adjustment in the Owner’s Manual for the 2025.32 Software Update.

The system undoubtedly helps improve safety as it helps keep drivers honest. However, there are definitely workarounds, which people are using and promoting for monetary gain, and you can find them on basically any online marketplace, including TikTok shop and Amazon:

People are marketing the product as an FSD cheat device, which the cabin-facing camera will not be able to detect, allowing you to watch something on a phone or look through the windshield at the road.

The safeguards implemented by Tesla are designed to protect drivers from distractions and also protect the company itself from liability. People are still using Full Self-Driving as if it were a fully autonomous product, and it is not.

Tesla even says that the driver must pay attention and be ready to take over in any scenario:

“Yes. Autopilot is a driver assistance system that is intended to be used only with a fully attentive driver. It does not turn a Tesla into a fully autonomous vehicle.

Before enabling Autopilot, you must agree to “keep your hands on the steering wheel at all times” and to always “maintain control and responsibility for your vehicle.” Once engaged, Autopilot will also deliver an escalating series of visual and audio warnings, reminding you to place your hands on the wheel if insufficient torque is applied or your vehicle otherwise detects you may not be attentive enough to the road ahead. If you repeatedly ignore these warnings, you will be locked out from using Autopilot during that trip.

You can override any of Autopilot’s features at any time by steering or applying the accelerator at any time.”

It is good that Tesla is rewarding those who learn from their mistakes with this shorter timeframe to lose the strikes. It won’t be needed forever, though, as eventually, the company will solve autonomy. The question is: when?

Continue Reading

Trending