Connect with us

News

US Air Force awards SpaceX $20m contract to support its biggest spy satellites

Published

on

Slipping beneath the watchful eye of many skilled defense journalists, the government contracting database FPDS.gov indicates that the US Air Force awarded SpaceX more than $20 million in November 2017 to conduct a design study of vertical integration capabilities (VIC). Describing what exactly this means first requires some background.

Vertical whaaaat?

The flood of acronyms and technical terminology that often follow activities of the Federal government should not detract from the significance of this contract award. First and foremost, what exactly is “vertical integration” and why is significant for SpaceX? Not to be confused with more abstract descriptions of corporate organization (vertical integration describes one such style), integration here describes the literal process of attaching satellite and spacecraft payloads to the rockets tasked with ferrying them to orbit.

Likely as a result of its relative simplicity, SpaceX has used a system of horizontal integration for as long as they have been in the business of launching rockets, be it Falcon 1, Falcon 9, or Falcon Heavy. In order to integrate payloads to the rocket horizontally, SpaceX has a number of horizontal integration facilities (HIF) directly beside each of their three launch pads – two in Florida, one in California. After being transported from the company’s Hawthorne, CA rocket factory, Falcon 9 and Heavy boosters, second stages, payload fairings, and other miscellaneous components are all brought into a HIF, where they are craned off of their transporters (a semi-trailer in most cases) and placed on horizontal stands inside the building.

While in the HIF, all three main components are eventually attached together (integrated). The booster or first stage (S1) has its landing legs and grid fins installed soon after arrival at the launch site, followed by the mating of the first and second stages. Once these two primary components of the rocket are attached, the entire stack – as the mated vehicle is called – is once again lifted up by cranes inside the facility and placed atop what SpaceX calls the strongback (also known as the Transporter/Launcher/Erector, or TEL). A truly massive steel structure, the TEL is tasked with carrying the rocket to the launch pad, typically a short quarter mile trek from the integration facility. Once it reaches the pad, the TEL uses a powerful hydraulic lift system to rotate itself and its rocket payload from horizontal to vertical. It may look underwhelming, but it serves to remember that a complete Falcon 9/Heavy and its TEL are both considerably more than twice as tall as a basketball court is long.

Once at the pad, the TEL serves as the rocket’s connection to the pad’s many different ground systems. Crucially, it is tasked with loading the rocket with at least four different fuels, fluids, and gases at a broad range of temperatures, as well as holding the rocket down with giant clamps at its base, providing connection points to transmit a flood of data back to SpaceX launch control. SpaceX’s relatively unique TEL technology is to some extent the foundation of the company’s horizontal integration capabilities – such a practice would be impossible without reliable systems and methods that allow the rocket to be easily transported about and connected to pad systems.

Still, after the Amos-6 mishap in September 2016, which saw a customer’s payload entirely destroyed by a launch vehicle anomaly ahead of a static fire test, SpaceX has since changed their procedures, and now conducts those static fire tests with just the first and second stages – the payload is no longer attached until after the test is completed. For such a significant decrease in risk, the tradeoff of an additional day or so of work is minimal to SpaceX and its customers. Once completed, the rocket is brought horizontal and rolled back into the HIF, where the rocket’s payload fairing is finally attached to the vehicle while technicians ensure that the rocket is in good health after a routine test-ignition of its first stage engines.

Before being connected to the rocket, the payload itself must also go through its own integration process. Recently demonstrated by a flurry of SpaceX images of Falcon Heavy and its Roadster payload, this involves attaching the payload to a payload adapter, tasked with both securing the payload and fairing to the launch vehicle. Thankfully, the fairing is far smaller than the rocket itself, and this means it can be vertically integrated with the payload and adapter. The final act of joining and bolting together the two fairing halves is known as encapsulation – at which point the payload is now snug inside the fairing and ready for launch. Finally, the integrated payload and fairing are lifted up by cranes, rotated horizontally, and connected to the top of the rocket’s second stage, marking the completion of the integration process.

A different way to integrate

Here lies the point at which the Air Force’s $20m contract with SpaceX comes into play. As a result of certain (highly classified) aspects of some of the largest military satellites, the Department of Defense (DoD) and National Reconnaissance Office (NRO) prefer or sometimes outright require that their payloads remain vertical while being attached to a given rocket. The United Launch Alliance (ULA), SpaceX’s only competition for military launches, almost exclusively utilizes vertical integration for all of their launches, signified by the immense buildings (often themselves capable of rolling on tracks) present at their launch pads. SpaceX has no such capability, at present, and this means that they are effectively prevented from competing for certain military launch contracts – contracts that are often the most demanding and thus lucrative.

Advertisement
-->

It’s clear that the Air Force itself is the main impetus pushing SpaceX to develop vertical integration capabilities, a reasonable continuation of the military’s general desire for assured access to orbit in the event of a vehicle failure grounding flights for the indefinite future. For example, if ULA or SpaceX were to suffer a failure and be forced to ground their rockets for months while investigating the incident, the DoD could choose to transfer time-sensitive payload(s) to the unaffected company for the time being. With vertical integration, this rationale could extend to all military satellites, not simply those that support horizontal integration.

Fittingly, the ability to vertically integrate satellites is likely a necessity if SpaceX hopes to derive the greatest possible value from its recently and successfully introduced Falcon Heavy rocket, a highly capable vehicle that the government is likely very interested in. Although the specific Air Force contract blandly labels it a “Design Study,” (FPDS.gov account required) its hefty $21 million award may well be far more money than SpaceX needs to design a solution. In fact, knowing SpaceX’s famous ability to develop and operate technologies with exceptional cost efficiency, it would not be shocking to discover that the intrepid launch company has accepted the design study grant and instead jumped head-first into prototyping, if not the construction of an operational solution. More likely than not, SpaceX would choose to take advantage of the fixed tower (known as the Fixed Service Structure, FSS) currently present at Pad 39A, atop which a crane and work platforms could presumably be attached

Intriguingly, it is a real possibility that Fairing 2.0 – its first launch scheduled to occur as early as Feb. 21 – could have been upgraded in part to support present and future needs of the Department of Defense, among numerous other benefits. Fairing 2.0’s larger size may have even been precipitated by physical requirements for competing for and dealing with the largest spysats operating by the DoD and NRO, although CEO Elon Musk’s characterization of that change as a “slightly larger diameter” could suggest otherwise. On the other hand, Musk’s offhand mention of the possibility of significantly lengthening the payload fairing is likely aimed directly at government customers in both the civil and military spheres of space utilization. Time will tell, and it certainly will not hurt SpaceX or its customers if Fairing 2.0 is also considerably easier to recover and reuse.

Advertisement
-->

Ultimately, it should come as no surprise that SpaceX would attempt to leverage this contract and the DoD’s interest in ways that might also facilitate the development of the company’s futuristic BFR rocket, intended to eventually take humans to the Moon, Mars, and beyond. As shown by both 2016 and 2017 iterations of the vehicle, it appears that SpaceX intends to use vertical integration to attach the spaceship (BFS) to the booster (BFR). While it’s unlikely that this Air Force contract will result in the creation of a vertical integration system that could immediately be applied to or replicated for BFS testing, the experience SpaceX would gain in the process of building something similar for the Air Force would be invaluable and essentially kill two birds with one stone.

While now outdated, SpaceX’s 2016 Mars rocket featured a giant crane used for vertical integration. BFR appears to use the same approach. (SpaceX)

Follow along live as I and launch photographers Tom Cross and Pauline Acalin cover these exciting proceedings live and in person.

Teslarati   –   Instagram Twitter

Tom CrossTwitter

Pauline Acalin  Twitter

Eric Ralph Twitter

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Robovan’s likely first real-world use teased by Boring Company President

As per the executive, the vehicle will be used to move large crowds through Las Vegas during major events. 

Published

on

Credit: Grok Imagine

The Boring Company President Steve Davis has shared the most likely first real-world use for Tesla’s Robovan.

As per the executive, the vehicle will be used to move large crowds through Las Vegas during major events. 

Tesla Robovan for high-demand events

During a feature with the Las Vegas Review-Journal, Boring Company President Steve Davis stated that the Tesla Robovan will be used in Sin City once the Vegas Loop expands across the Strip and downtown and the fleet grows to about 1,200 Teslas. 

At that scale, Robovans would primarily be deployed during predictable surges, such as game days and large shows, when many riders are traveling to the same destination at the same time.

“The second you have four (passengers) and you have to start stopping, the best thing you can do is put your smallest vehicle in, which is a car. But if you know people are going to the stadium because of a game, you’ll know an hour before, two hours before, that a lot of people are going to a game or a Sphere show, if you are smart about it, that’s when you put a high occupancy vehicle in, that’s when you put the Robovan in,” Davis said.

Advertisement
-->
Credit: Tesla

Vegas Loop expansion

Steve Davis’s Robovan comment comes as The Boring Company’s Vegas Loop expands its airport service. Phase 1 of rides to Harry Reid International Airport began last month, allowing passengers to travel from existing Loop stations such as Resorts World, Encore, Westgate, and the Las Vegas Convention Center.

Phase 2 will add a 2.2-mile dual-direction tunnel from Westgate to Paradise Road, cutting surface travel and increasing efficiency. That section is expected to open within months and will allow speeds of up to 60 mph on parts of the route, while expanding the fleet to around 160 vehicles.

Future phases extend tunnels closer to the airport terminals and add multiple stations along University Center Drive, pushing the fleet close to 300 vehicles. The final phase, an underground airport station, was described by Davis as the system’s “holy grail.” This, however, has no definite timeframe as of yet. 

Continue Reading

News

Tesla seeks engineer to make its iOS Robotaxi app feel “magical”

It appears that Tesla is hard at work in ensuring that users of its Robotaxi service are provided with the best user experience possible.

Published

on

Credit: Grok Imagine

Tesla is hiring an iOS Engineer for its Robotaxi app team, with the job posting emphasizing the creation of polished experiences that make the service not just functional, but “magical.”

Needless to say, it appears that Tesla is hard at work in ensuring that users of its Robotaxi service are provided with the best user experience possible.

Robotaxi App features

As observed by Tesla community members, Tesla has gone live with a job listing for an iOS Engineer for its Robotaxi App. The job listing mentions the development of a “core mobile experience that enables customers to summon, track, and interact with a driverless vehicle. From requesting a ride to enabling frictionless entry, from trip planning to real-time vehicle status and media control.”

Interestingly enough, the job listing also mentioned the creation of polished experiences that make the Robotaxi more than just functional. “You will take full ownership of features—from architecture design to robust implementation—delivering delightful and polished experiences that make Robotaxi not just functional, but magical,” Tesla noted in its job listing.

Apple’s “magical” marketing

Tesla’s use of the word “magical” when referring to the Robotaxi app mirrors the marketing used by Apple for some of its key products. Apple typically uses the word when referring to products or solutions that transform complex technology into something that feels effortless, simple, and natural to daily life. Products such as the AirPods’ seamless pairing with the iPhone and FaceID’s complex yet simple-to-use security system have received Apple’s “magical” branding. 

Advertisement
-->

With this in mind, Tesla seems intent on developing a Robotaxi app that is sophisticated, but still very easy to use. Tesla already has extensive experience in this area, with the Tesla App consistently being hailed by users as one of the best in its segment. If Tesla succeeds in making the Robotaxi app worthy of its “magical” branding, then it wouldn’t be a surprise if the service sees rapid adoption even among mainstream consumers. 

Continue Reading

News

Tesla is coming to Estonia and Latvia in latest European expansion: report

Tesla seems to be accelerating its regional expansion following its recent launch in Lithuania.

Published

on

Credit: Grok Imagine

Recent reports have indicated that Tesla has taken a step toward entering the Baltic states by registering new subsidiaries in Latvia and Estonia.

Filings suggest that Tesla is accelerating its regional expansion following its recent launch in Lithuania, with service centers likely coming before full sales operations.

Official entities in Latvia and Estonia

Tesla has established two new legal entities, Tesla Latvia SIA and Tesla Estonia OÜ, both owned by Tesla International B.V., as noted in an EV Wire report. Corporate records show the Estonian entity was formed on December 16, 2025, while the Latvian subsidiary was registered earlier, on November 7.

Both entities list senior Tesla executives on their boards, including regional and finance leadership responsible for new market expansion across Europe. Importantly, the entities are registered under “repair and maintenance of motor vehicles,” rather than strictly vehicle sales. This suggests that Tesla service centers will likely be launched in both countries.

The move mirrors Tesla’s recent Baltic rollout strategy. When Tesla entered Lithuania, it first established a local entity, followed by a pop-up store within weeks and a permanent service center a few months later. It would then not be surprising if Tesla follows a similar strategy in Estonia and Latvia, and service and retail operations arrive in the first half of 2026.

Advertisement
-->

Tesla’s European push

Tesla saw a drop in sales in Europe in 2025, though the company is currently attempting to push more sales in the region by introducing its most affordable vehicles yet, the Model 3 Standard and the Model Y Standard. Both vehicles effectively lower the price of entry into the Tesla ecosystem, which may make them attractive to consumers.

Tesla is also hard at work in its efforts to get FSD approved for the region. In the fourth quarter of 2025, Tesla rolled out an FSD ride-along program in several European countries, allowing consumers to experience the capabilities of FSD firsthand. In early December, reports emerged indicating that the FSD ride-along program would be extended in several European territories until the end of March 2026. 

Continue Reading