Connect with us

News

US Air Force awards SpaceX $20m contract to support its biggest spy satellites

Published

on

Slipping beneath the watchful eye of many skilled defense journalists, the government contracting database FPDS.gov indicates that the US Air Force awarded SpaceX more than $20 million in November 2017 to conduct a design study of vertical integration capabilities (VIC). Describing what exactly this means first requires some background.

Vertical whaaaat?

The flood of acronyms and technical terminology that often follow activities of the Federal government should not detract from the significance of this contract award. First and foremost, what exactly is “vertical integration” and why is significant for SpaceX? Not to be confused with more abstract descriptions of corporate organization (vertical integration describes one such style), integration here describes the literal process of attaching satellite and spacecraft payloads to the rockets tasked with ferrying them to orbit.

Likely as a result of its relative simplicity, SpaceX has used a system of horizontal integration for as long as they have been in the business of launching rockets, be it Falcon 1, Falcon 9, or Falcon Heavy. In order to integrate payloads to the rocket horizontally, SpaceX has a number of horizontal integration facilities (HIF) directly beside each of their three launch pads – two in Florida, one in California. After being transported from the company’s Hawthorne, CA rocket factory, Falcon 9 and Heavy boosters, second stages, payload fairings, and other miscellaneous components are all brought into a HIF, where they are craned off of their transporters (a semi-trailer in most cases) and placed on horizontal stands inside the building.

While in the HIF, all three main components are eventually attached together (integrated). The booster or first stage (S1) has its landing legs and grid fins installed soon after arrival at the launch site, followed by the mating of the first and second stages. Once these two primary components of the rocket are attached, the entire stack – as the mated vehicle is called – is once again lifted up by cranes inside the facility and placed atop what SpaceX calls the strongback (also known as the Transporter/Launcher/Erector, or TEL). A truly massive steel structure, the TEL is tasked with carrying the rocket to the launch pad, typically a short quarter mile trek from the integration facility. Once it reaches the pad, the TEL uses a powerful hydraulic lift system to rotate itself and its rocket payload from horizontal to vertical. It may look underwhelming, but it serves to remember that a complete Falcon 9/Heavy and its TEL are both considerably more than twice as tall as a basketball court is long.

Once at the pad, the TEL serves as the rocket’s connection to the pad’s many different ground systems. Crucially, it is tasked with loading the rocket with at least four different fuels, fluids, and gases at a broad range of temperatures, as well as holding the rocket down with giant clamps at its base, providing connection points to transmit a flood of data back to SpaceX launch control. SpaceX’s relatively unique TEL technology is to some extent the foundation of the company’s horizontal integration capabilities – such a practice would be impossible without reliable systems and methods that allow the rocket to be easily transported about and connected to pad systems.

Still, after the Amos-6 mishap in September 2016, which saw a customer’s payload entirely destroyed by a launch vehicle anomaly ahead of a static fire test, SpaceX has since changed their procedures, and now conducts those static fire tests with just the first and second stages – the payload is no longer attached until after the test is completed. For such a significant decrease in risk, the tradeoff of an additional day or so of work is minimal to SpaceX and its customers. Once completed, the rocket is brought horizontal and rolled back into the HIF, where the rocket’s payload fairing is finally attached to the vehicle while technicians ensure that the rocket is in good health after a routine test-ignition of its first stage engines.

Before being connected to the rocket, the payload itself must also go through its own integration process. Recently demonstrated by a flurry of SpaceX images of Falcon Heavy and its Roadster payload, this involves attaching the payload to a payload adapter, tasked with both securing the payload and fairing to the launch vehicle. Thankfully, the fairing is far smaller than the rocket itself, and this means it can be vertically integrated with the payload and adapter. The final act of joining and bolting together the two fairing halves is known as encapsulation – at which point the payload is now snug inside the fairing and ready for launch. Finally, the integrated payload and fairing are lifted up by cranes, rotated horizontally, and connected to the top of the rocket’s second stage, marking the completion of the integration process.

A different way to integrate

Here lies the point at which the Air Force’s $20m contract with SpaceX comes into play. As a result of certain (highly classified) aspects of some of the largest military satellites, the Department of Defense (DoD) and National Reconnaissance Office (NRO) prefer or sometimes outright require that their payloads remain vertical while being attached to a given rocket. The United Launch Alliance (ULA), SpaceX’s only competition for military launches, almost exclusively utilizes vertical integration for all of their launches, signified by the immense buildings (often themselves capable of rolling on tracks) present at their launch pads. SpaceX has no such capability, at present, and this means that they are effectively prevented from competing for certain military launch contracts – contracts that are often the most demanding and thus lucrative.

Advertisement

It’s clear that the Air Force itself is the main impetus pushing SpaceX to develop vertical integration capabilities, a reasonable continuation of the military’s general desire for assured access to orbit in the event of a vehicle failure grounding flights for the indefinite future. For example, if ULA or SpaceX were to suffer a failure and be forced to ground their rockets for months while investigating the incident, the DoD could choose to transfer time-sensitive payload(s) to the unaffected company for the time being. With vertical integration, this rationale could extend to all military satellites, not simply those that support horizontal integration.

Fittingly, the ability to vertically integrate satellites is likely a necessity if SpaceX hopes to derive the greatest possible value from its recently and successfully introduced Falcon Heavy rocket, a highly capable vehicle that the government is likely very interested in. Although the specific Air Force contract blandly labels it a “Design Study,” (FPDS.gov account required) its hefty $21 million award may well be far more money than SpaceX needs to design a solution. In fact, knowing SpaceX’s famous ability to develop and operate technologies with exceptional cost efficiency, it would not be shocking to discover that the intrepid launch company has accepted the design study grant and instead jumped head-first into prototyping, if not the construction of an operational solution. More likely than not, SpaceX would choose to take advantage of the fixed tower (known as the Fixed Service Structure, FSS) currently present at Pad 39A, atop which a crane and work platforms could presumably be attached

Intriguingly, it is a real possibility that Fairing 2.0 – its first launch scheduled to occur as early as Feb. 21 – could have been upgraded in part to support present and future needs of the Department of Defense, among numerous other benefits. Fairing 2.0’s larger size may have even been precipitated by physical requirements for competing for and dealing with the largest spysats operating by the DoD and NRO, although CEO Elon Musk’s characterization of that change as a “slightly larger diameter” could suggest otherwise. On the other hand, Musk’s offhand mention of the possibility of significantly lengthening the payload fairing is likely aimed directly at government customers in both the civil and military spheres of space utilization. Time will tell, and it certainly will not hurt SpaceX or its customers if Fairing 2.0 is also considerably easier to recover and reuse.

Advertisement

Ultimately, it should come as no surprise that SpaceX would attempt to leverage this contract and the DoD’s interest in ways that might also facilitate the development of the company’s futuristic BFR rocket, intended to eventually take humans to the Moon, Mars, and beyond. As shown by both 2016 and 2017 iterations of the vehicle, it appears that SpaceX intends to use vertical integration to attach the spaceship (BFS) to the booster (BFR). While it’s unlikely that this Air Force contract will result in the creation of a vertical integration system that could immediately be applied to or replicated for BFS testing, the experience SpaceX would gain in the process of building something similar for the Air Force would be invaluable and essentially kill two birds with one stone.

While now outdated, SpaceX’s 2016 Mars rocket featured a giant crane used for vertical integration. BFR appears to use the same approach. (SpaceX)

Follow along live as I and launch photographers Tom Cross and Pauline Acalin cover these exciting proceedings live and in person.

Teslarati   –   Instagram Twitter

Tom CrossTwitter

Pauline Acalin  Twitter

Eric Ralph Twitter

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk says Tesla Robotaxi launch will force companies to license Full Self-Driving

“The automakers keep being told that this isn’t real or that just buying some hardware from Nvidia will solve it. As Tesla robotaxis become widespread and their other solutions don’t work, they will naturally turn to us.”

Published

on

Tesla CEO Elon Musk says the automaker’s Robotaxi platform launch later this month will essentially force other companies to license Full Self-Driving to achieve their own goals of achieving autonomy.

Musk’s statement comes as a video captured today showed the first Tesla Robotaxi test mules on public streets in Austin, Texas, just one day after the City officially listed the company as an autonomous vehicle operator.

A prediction by investing YouTube and Tesla community member Dave Lee stated that “at least one automaker by end of year” will license Full Self-Driving from the Musk-led company, as it will give rivals the confidence to use the software to run their own self-driving operations.

Lee detailed his theory by stating that the company that chooses to commit to FSD licensing will not be able to integrate the hardware and sell those units immediately. Instead, it will take two years or so to solve the engineering and design applications.

First Tesla driverless robotaxi spotted in the wild in Austin, TX

Advertisement

Musk revealed his true thoughts on other automakers’ attempts at vehicle autonomy, and said many are being told that Robotaxi is not real or that they can solve their problems with hardware orders to Nvidia.

He went on to say that companies will be forced to turn to Tesla at some point or another, because Robotaxi will be widespread and their solutions to figuring out an effective deployment will prove to be failures:

“The automakers keep being told that this isn’t real or that just buying some hardware from Nvidia will solve it. As Tesla robotaxis become widespread and their other solutions don’t work, they will naturally turn to us.”

Musk has not been shy to respond to speculation regarding the video of the Robotaxi, which was shared on X earlier today. This is perhaps one of the more fiery things he revealed. He seems ultra-confident in what Tesla will prove and achieve in the near future with the launch of the Robotaxi platform.

Many believe it will be rolled out this month. Bloomberg reported recently that Tesla was internally aiming for June 12. The company has not directly responded to these rumors.

Tesla has discussed on several occasions that it is in talks with an automaker about licensing Full Self-Driving, but it has never revealed who. The company first revealed discussions with another automaker in early 2024 when Elon Musk said:

“We’re in conversations with one major automaker regarding licensing FSD. It really just becomes a case of having them use the same cameras and inference computer and licensing our software. Once it becomes obvious that if you don’t have this (FSD) in a car, nobody wants your car. It’s a smart car… The people don’t understand all cars will need to be smart cars, or you will not sell, or nobody would buy it. Once that becomes obvious, I think licensing becomes not optional.”

Advertisement

Tesla confirms it is in talks with major automaker for potential FSD licensing

Many, including us, suspected that Ford was the company that Tesla was speaking of due to Musk’s relationship with Jim Farley, which resulted in the legacy automaker being the first major car company to adopt Tesla’s North American Charging Standard (NACS), which gave them access to the Supercharging Network.

This catalyzed an onslaught of companies choosing to make the same move as Tesla had truly set itself apart in terms of charging infrastructure.

Companies may be forced to make a similar decision if it can make the same type of statement with the rollout of Robotaxi.

Advertisement
Continue Reading

Elon Musk

Tesla CEO Elon Musk reveals new details about Robotaxi rollout

The first Tesla Robotaxi unit was spotted in Austin earlier today, and CEO Elon Musk is revealing some cool new details.

Published

on

Tesla CEO Elon Musk has revealed new details about the company’s relatively imminent rollout of the Robotaxi platform as the suspected launch date of June 12 continues to near.

Earlier today, the first video showing the first driverless Tesla Robotaxi in Austin was shared on X, just a day after the City officially listed the company as an autonomous vehicle operator on its website. Tesla is listed as a company in the “Testing” phase.

The initial details of the Robotaxi are being revealed by Musk, who is carefully releasing small tidbits that seem to show the capabilities of the entire Tesla fleet, and not necessarily just the vehicles that will be involved in the initial rollout in Austin.

First Tesla driverless robotaxi spotted in the wild in Austin, TX

His first tidbit is one that many Tesla owners and fans will already know: many Teslas are capable of this driveless performance, but Full Self-Driving is not yet refined to the point where the software is quite ready to handle it. Current versions are robust, but not prepared for driverless navigation. The hardware, however, will enable Teslas to be Robotaxis, even if they’re already purchased by owners:

This is one of the biggest advantages Tesla has over other vehicle makers. Simply put, the Over-the-Air software updates that will roll out to FSD users will eventually make their cars into Robotaxis as well.

However, Musk shed some details on the version of FSD that is being run in these new Robotaxis that were spotted. Musk said that the version these Robotaxis are running is a new version, but will soon “merge to main branch.”

There is also an even newer version that has four times the parameters as this newer version that the test-stage Robotaxis are using, but Musk admits that this needs significant refinement before it is released to the public.

As of now, Tesla is simply teasing the actual launch date of the Robotaxi program, but Bloomberg reported earlier this month that it will occur on June 12.

Advertisement
Continue Reading

News

First Tesla driverless robotaxi spotted in the wild in Austin, TX

The short clip suggests that Tesla may be ramping up its preparations for its robotaxi rollout in Austin.

Published

on

Credit: @TerrapinTerpene/X

A recent video posted on X has provided a first look at Tesla’s driverless robotaxi, which is expected to be deployed in Austin, Texas, this month. The vehicle was a new Tesla Model Y, which was followed by what appeared to be a manned chase car.

The short clip suggests that Tesla may be ramping up its preparations for its robotaxi rollout in Austin.

The First Robotaxi Sighting

It was evident from the short clip that the Tesla robotaxi was operating completely driverless. In the video, which was posted on X by @TerrapinTerpene, the driverless Tesla could be seen confidently making a turn. The vehicle looked and behaved like any other car on the road, save for the fact that there was no one in the driver’s seat.

Interestingly enough, the short video also provided a teaser on where Tesla will place its “robotaxi” logo on its self-driving cars. Based on the video, the robotaxis’ logo will be tastefully placed on the front doors, making the vehicles look sleek and clean.

Initial Rollout Imminent

Recent reports have suggested that Tesla is already starting the testing phase of its robotaxi service in Austin, Texas. Expectations are also high that Tesla’s initial fleet of self-driving vehicles will be utilizing a lot of teleoperation to ensure that they operate as safely as possible.

Advertisement

Updates to Austin’s official website recently have hinted at Tesla’s robotaxi launch. Just this Monday, Tesla was listed as an autonomous vehicle (AV) operator on Austin’s official Department of Motor Vehicles (DMV). Other AV operators listed on the site are Waymo and Zoox, among others.

Elon Musk, for his part, has noted that by the end of June, the public in Austin should be ready to take rides in Tesla robotaxis without an invitation. He also noted in late May that Tesla has been busy testing driverless cars on Austin’s city streets without any incidents.

Continue Reading

Trending