

News
US Air Force awards SpaceX $20m contract to support its biggest spy satellites
Slipping beneath the watchful eye of many skilled defense journalists, the government contracting database FPDS.gov indicates that the US Air Force awarded SpaceX more than $20 million in November 2017 to conduct a design study of vertical integration capabilities (VIC). Describing what exactly this means first requires some background.
Vertical whaaaat?
The flood of acronyms and technical terminology that often follow activities of the Federal government should not detract from the significance of this contract award. First and foremost, what exactly is “vertical integration” and why is significant for SpaceX? Not to be confused with more abstract descriptions of corporate organization (vertical integration describes one such style), integration here describes the literal process of attaching satellite and spacecraft payloads to the rockets tasked with ferrying them to orbit.
Likely as a result of its relative simplicity, SpaceX has used a system of horizontal integration for as long as they have been in the business of launching rockets, be it Falcon 1, Falcon 9, or Falcon Heavy. In order to integrate payloads to the rocket horizontally, SpaceX has a number of horizontal integration facilities (HIF) directly beside each of their three launch pads – two in Florida, one in California. After being transported from the company’s Hawthorne, CA rocket factory, Falcon 9 and Heavy boosters, second stages, payload fairings, and other miscellaneous components are all brought into a HIF, where they are craned off of their transporters (a semi-trailer in most cases) and placed on horizontal stands inside the building.
- The large, white crawler underneath Falcon 9 is one of several methods of transportation SpaceX uses. (Instagram /u/robhubar)
- Falcon Heavy is composed of a Falcon 9 upper stage and three Falcon 9-class boosters. (SpaceX)
- The fully-integrated Falcon Heavy rolls out to Pad 39A. For vertical integration, think of this… but vertical. (SpaceX)
While in the HIF, all three main components are eventually attached together (integrated). The booster or first stage (S1) has its landing legs and grid fins installed soon after arrival at the launch site, followed by the mating of the first and second stages. Once these two primary components of the rocket are attached, the entire stack – as the mated vehicle is called – is once again lifted up by cranes inside the facility and placed atop what SpaceX calls the strongback (also known as the Transporter/Launcher/Erector, or TEL). A truly massive steel structure, the TEL is tasked with carrying the rocket to the launch pad, typically a short quarter mile trek from the integration facility. Once it reaches the pad, the TEL uses a powerful hydraulic lift system to rotate itself and its rocket payload from horizontal to vertical. It may look underwhelming, but it serves to remember that a complete Falcon 9/Heavy and its TEL are both considerably more than twice as tall as a basketball court is long.
Falcon Heavy goes vertical pic.twitter.com/uG1k0WISv1
— Elon Musk (@elonmusk) January 5, 2018
Once at the pad, the TEL serves as the rocket’s connection to the pad’s many different ground systems. Crucially, it is tasked with loading the rocket with at least four different fuels, fluids, and gases at a broad range of temperatures, as well as holding the rocket down with giant clamps at its base, providing connection points to transmit a flood of data back to SpaceX launch control. SpaceX’s relatively unique TEL technology is to some extent the foundation of the company’s horizontal integration capabilities – such a practice would be impossible without reliable systems and methods that allow the rocket to be easily transported about and connected to pad systems.
Still, after the Amos-6 mishap in September 2016, which saw a customer’s payload entirely destroyed by a launch vehicle anomaly ahead of a static fire test, SpaceX has since changed their procedures, and now conducts those static fire tests with just the first and second stages – the payload is no longer attached until after the test is completed. For such a significant decrease in risk, the tradeoff of an additional day or so of work is minimal to SpaceX and its customers. Once completed, the rocket is brought horizontal and rolled back into the HIF, where the rocket’s payload fairing is finally attached to the vehicle while technicians ensure that the rocket is in good health after a routine test-ignition of its first stage engines.
- Elon Musk’s Roadster seen before being encapsulated in Falcon Heavy’s massive payload fairing. Below the Tesla is the payload adapter, which connects it to the rocket. (SpaceX)
- Imagine this building-sized fairing traveling approximately TWO MILES PER SECOND. (USAF)
- Finally, the fairing is transported vertically to the HIF, where it can be flipped horizontal and attached to its rocket. (Reddit /u/St-Jed-of-Calumet)
Before being connected to the rocket, the payload itself must also go through its own integration process. Recently demonstrated by a flurry of SpaceX images of Falcon Heavy and its Roadster payload, this involves attaching the payload to a payload adapter, tasked with both securing the payload and fairing to the launch vehicle. Thankfully, the fairing is far smaller than the rocket itself, and this means it can be vertically integrated with the payload and adapter. The final act of joining and bolting together the two fairing halves is known as encapsulation – at which point the payload is now snug inside the fairing and ready for launch. Finally, the integrated payload and fairing are lifted up by cranes, rotated horizontally, and connected to the top of the rocket’s second stage, marking the completion of the integration process.
A different way to integrate
Here lies the point at which the Air Force’s $20m contract with SpaceX comes into play. As a result of certain (highly classified) aspects of some of the largest military satellites, the Department of Defense (DoD) and National Reconnaissance Office (NRO) prefer or sometimes outright require that their payloads remain vertical while being attached to a given rocket. The United Launch Alliance (ULA), SpaceX’s only competition for military launches, almost exclusively utilizes vertical integration for all of their launches, signified by the immense buildings (often themselves capable of rolling on tracks) present at their launch pads. SpaceX has no such capability, at present, and this means that they are effectively prevented from competing for certain military launch contracts – contracts that are often the most demanding and thus lucrative.
It’s clear that the Air Force itself is the main impetus pushing SpaceX to develop vertical integration capabilities, a reasonable continuation of the military’s general desire for assured access to orbit in the event of a vehicle failure grounding flights for the indefinite future. For example, if ULA or SpaceX were to suffer a failure and be forced to ground their rockets for months while investigating the incident, the DoD could choose to transfer time-sensitive payload(s) to the unaffected company for the time being. With vertical integration, this rationale could extend to all military satellites, not simply those that support horizontal integration.
- A hop and a skip south of 39A is SpaceX’s LC-40 pad. (SpaceX)
- Like all SpaceX pads, horizontal integration is a central feature. (SpaceX)
- LC-40’s brand new TEL carries a flight-proven Falcon 9 and Dragon out to the pad. (SpaceX)
Fittingly, the ability to vertically integrate satellites is likely a necessity if SpaceX hopes to derive the greatest possible value from its recently and successfully introduced Falcon Heavy rocket, a highly capable vehicle that the government is likely very interested in. Although the specific Air Force contract blandly labels it a “Design Study,” (FPDS.gov account required) its hefty $21 million award may well be far more money than SpaceX needs to design a solution. In fact, knowing SpaceX’s famous ability to develop and operate technologies with exceptional cost efficiency, it would not be shocking to discover that the intrepid launch company has accepted the design study grant and instead jumped head-first into prototyping, if not the construction of an operational solution. More likely than not, SpaceX would choose to take advantage of the fixed tower (known as the Fixed Service Structure, FSS) currently present at Pad 39A, atop which a crane and work platforms could presumably be attached
Intriguingly, it is a real possibility that Fairing 2.0 – its first launch scheduled to occur as early as Feb. 21 – could have been upgraded in part to support present and future needs of the Department of Defense, among numerous other benefits. Fairing 2.0’s larger size may have even been precipitated by physical requirements for competing for and dealing with the largest spysats operating by the DoD and NRO, although CEO Elon Musk’s characterization of that change as a “slightly larger diameter” could suggest otherwise. On the other hand, Musk’s offhand mention of the possibility of significantly lengthening the payload fairing is likely aimed directly at government customers in both the civil and military spheres of space utilization. Time will tell, and it certainly will not hurt SpaceX or its customers if Fairing 2.0 is also considerably easier to recover and reuse.
Under consideration. We’ve already stretched the upper stage once. Easiest part of the rocket to change. Fairing 2, flying soon, also has a slightly larger diameter. Could make fairing much longer if need be & will if BFR takes longer than expected.
— Elon Musk (@elonmusk) February 12, 2018
Ultimately, it should come as no surprise that SpaceX would attempt to leverage this contract and the DoD’s interest in ways that might also facilitate the development of the company’s futuristic BFR rocket, intended to eventually take humans to the Moon, Mars, and beyond. As shown by both 2016 and 2017 iterations of the vehicle, it appears that SpaceX intends to use vertical integration to attach the spaceship (BFS) to the booster (BFR). While it’s unlikely that this Air Force contract will result in the creation of a vertical integration system that could immediately be applied to or replicated for BFS testing, the experience SpaceX would gain in the process of building something similar for the Air Force would be invaluable and essentially kill two birds with one stone.

While now outdated, SpaceX’s 2016 Mars rocket featured a giant crane used for vertical integration. BFR appears to use the same approach. (SpaceX)
Follow along live as I and launch photographers Tom Cross and Pauline Acalin cover these exciting proceedings live and in person.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
News
Tesla adjusts Robotaxi safety monitor strategy in Austin with new service area
The positioning of the driver, as well as the driver’s hands being closer to the steering wheel, is more similar to what Tesla is doing in the Bay Area Robotaxi program than it is to what it has done in Austin.

Tesla has adjusted its Robotaxi safety monitor strategy in Austin after it expanded its service area in the city last week for the third time.
Tesla has been operating its Robotaxi platform in Austin since June 22. The vehicles have been operated without a driver, but Tesla has placed safety monitors in the passenger’s seat as a precaution.
The safety monitors are responsible for performing any necessary interventions and maintaining a safe and comfortable cabin for riders as they experience Tesla’s first venture into the driverless ride-sharing space.
Last week, Tesla expanded its service area in Austin for the third time, expanding it from about 90 square miles to 170 square miles. The expansion included new territory, including the Austin-Bergstrom International Airport, Tesla’s Gigafactory Texas, and several freeways.
Tesla Robotaxi geofence expansion enters Plaid Mode and includes a surprise
The freeway is an area that is uncharted territory for the Tesla Robotaxi program, and this fact alone encouraged Tesla to switch up its safety monitor positioning for the time being.
For now, they will be riding in the driver’s seat when routes require freeway travel:
Sept 1 in Austin and our Robotaxi arrived with Tesla safety driver in the driver seat, similar to the Bay area (no logo on the car). Here’s that first moment when I realized, our autonomous car was heading onto the freeway. pic.twitter.com/1QfyN2Ubzf
— Gail 🇺🇸 (@gailalfaratx) September 2, 2025
The positioning of the driver, as well as the driver’s hands being closer to the steering wheel, is more similar to what Tesla is doing in the Bay Area Robotaxi program than it is to what it has done in Austin.
This is sure to draw criticism from skeptics, but it is simply a step to keep things controlled and safe while the first Robotaxi drives take passengers on the highway with this version of the Full Self-Driving software.
This FSD version differs from the one that customers have in their own vehicles, but CEO Elon Musk has indicated something big is coming soon. FSD v14 is coming to vehicles in the near future, and Musk has said its performance is pretty incredible.
Tesla’s Elon Musk shares optimistic teaser about FSD V14: “Feels sentient”
News
Tesla has best month ever in Turkey with drastic spike in sales
Tesla managed to sell 8,730 Model Y vehicles in Turkey, outpacing almost every competitor by a substantial margin. Only one brand sold better than Tesla in August in Turkey, and it was Renault.

Tesla had its best monthly performance ever in Turkey in August, thanks to a drastic spike in sales.
Tesla saw an 86 percent bump in sales of the new Model Y in Turkey in August compared to July, dominating the market.
The performance was one of Tesla’s best in the market, and the company’s sales for the month accounted for half of all EV sales in Turkey for August, as it dominated and led BYD, which was the second-best-selling brand with just 1,639 units sold.
Tesla managed to sell 8,730 Model Y vehicles in Turkey, outpacing almost every competitor by a substantial margin. Only one brand sold better than Tesla in August in Turkey, and it was Renault.
Turkey reported 8,730 Tesla sales and 10.6% market share in August. BEV penetration is 21.3% and Tesla has 49.9% of this segment. 🇹🇷
• Market share is 558 basis points or 111% above the 3-month trailing average of 5.0%
• Tesla second best-selling brand
• Model Y best-selling… pic.twitter.com/qLhX7VQWXp— Roland Pircher (@piloly) September 2, 2025
Electric vehicles are, in some ways, more desirable than their gas counterparts in Turkey for several reasons. Most of the reasoning is financial.
First, EVs are subject to a lower Special Consumption Tax in Turkey. EVs can range from 25 percent to up to 170 percent, but this is less than the 70 to 220 percent rate that gas-powered vehicles can face. The tax is dependent on engine size.
Additionally, EVs are exempt from the annual Motor Vehicle Tax for the first ten years, providing consumers with a long-term ownership advantage. There are also credits that can amount to $30,000 in breaks, which makes them more accessible and brings down the cost of ownership.
Let’s not forget the other advantages that are felt regardless of country: cheaper fuel costs, reduced maintenance, and improved performance.
The base Model Y is the only configuration available in Turkey currently.
News
Tesla is upgrading airbag safety through a crazy software update
“This upgrade builds upon your vehicle’s superior crash protection by now using Tesla Vision to help offer some of the most cutting-edge airbag performance in the event of a frontal crash.”

Tesla is upgrading airbag safety through a crazy software update, which will utilize the company’s vision-first approach to enable better protection in the event of an accident.
Over the years, Tesla has gained an incredible reputation for prioritizing safety in its vehicles, with crash test ratings at the forefront of its engineers’ minds.
This has led to Tesla gaining numerous five-star safety ratings and awards related to safety. It is not just a statistical thing, either. In the real world, we’ve seen Teslas demonstrate some impressive examples of crash safety.
Everything from that glass roof not caving in when a tree falls on it to a Model Y surviving a drive off a cliff has been recorded.
However, Tesla is always looking to improve safety, and unlike most companies, it does not need a physical hardware update to do so. It can enhance features such as crash response and airbag performance through Over-the-Air software updates, which download automatically to the vehicle.
In Tesla’s 2025.32 Software Update, the company is rolling out a Frontal Airbag System Enhancement, which aims to use Tesla Vision, the company’s camera-based approach to self-driving, to keep occupants safe.
The release notes state (via NotaTeslaApp):
“This upgrade builds upon your vehicle’s superior crash protection by now using Tesla Vision to help offer some of the most cutting-edge airbag performance in the event of a frontal crash. Building on top of regulatory and industry crash testing, this release enables front airbags to begin to inflate and restrain occupants earlier, in a way that only Tesla’s integrated systems are capable of doing, making your car safer over time.”
The use of cameras to predict a better time to restrain occupants with seatbelts and inflate airbags prior to a collision is a fantastic way to prevent injuries and limit harm done to those in the vehicle.
The feature is currently limited to the Model Y.
-
News4 days ago
Tesla is overhauling its Full Self-Driving subscription for easier access
-
Elon Musk4 days ago
Elon Musk shares unbelievable Starship Flight 10 landing feat
-
Elon Musk5 days ago
Elon Musk reveals when SpaceX will perform first-ever Starship catch
-
Elon Musk6 days ago
SpaceX Starship Flight 10 was so successful, it’s breaking the anti-Musk narrative
-
News4 days ago
Tesla expands crazy new lease deal for insane savings on used inventory
-
News1 day ago
Tesla appears to be mulling a Cyber SUV design
-
News4 days ago
Tesla talks Semi ramp, Optimus, Robotaxi rollout, FSD with Wall Street firm
-
News5 days ago
Tesla launches Full Self-Driving in a new region