News
SpaceX backup Starship reaches full height after nosecone installation
SpaceX has installed another Starship’s nosecone, all but completing the second full-size prototype a matter of days before the first fully-assembled Starship’s risky launch debut.
Over the last two months, SpaceX has effectively put Starship number 8 (SN8) through an almost nonstop series of tests, completing at least four separate cryogenic proof tests, four Raptor engine static fires, and much more. The company’s South Texas team have also dodged an array of technical bugs; installed, plumbed, and wired what amounts to ~40% of Starship (the nose section) while fully exposed to the coastal elements; and even narrowly avoided a potentially catastrophic failure.
In spite of the many hurdles thrown up and delays resultant, CEO Elon Musk announced earlier this week that Starship SN8 is scheduled to attempt its 15-kilometer (~50,000 ft) launch debut as early as Monday, November 30th. Musk, however, does not see success as the most probable outcome.

Why, then, push to launch Starship SN8 when, in Musk’s own words, the probability of success is as low as “33%”? As previously discussed many times in the history of Teslarati’s BFR and Starship coverage, SpaceX’s attitude towards technology development is (unfortunately) relatively unique in the aerospace industry. While once a backbone of major parts of NASA’s Apollo Program moonshot, modern aerospace companies simply do not take risks, instead choosing a systems engineering methodology and waterfall-style development approach, attempting to understand and design out every single problem to ensure success on the first try.
The result: extremely predictable, conservative solutions that take huge sums of money and time to field but yield excellent reliability and all but guarantee moderate success. SpaceX, on the other hand, borrows from early US and German rocket groups and, more recently, software companies to end up with a development approach that prioritizes efficiency, speed, and extensive testing, forever pushing the envelope and thus continually improving whatever is built.
In the early stages of any program, the results of that approach can look extremely unusual and rudimentary without context (i.e. Starhopper, above), but building and testing a minimum viable product or prototype is a very intentional foundation. Particularly at the start, those minimal prototypes are extremely cheap and almost singularly focused on narrowing a vast range of design options to something more palatable. As those prototypes rapidly teach their builders what the right and wrong questions and design decisions are, more focused and refined prototypes are simultaneously built and tested.
Done well, the agile approach is often quite similar to evolution, where prototype failures inform necessary design changes and killing off dead-end strategies, designs, and assumptions before they can be built upon. In many cases, compared to cautious waterfall-style development, it will even produce results that are both better, cheaper, and faster to realize. SpaceX’s Starship program is perhaps the most visible example in history, made all the more interesting and controversial by the fact that it’s still somewhere in between its early, chaotic development phase and a clear path to a viable product.
On the build side of things, SpaceX has created a truly incredible ad hoc factory from next to nothing, succeeding to the point that the company is now arguably testing and pushing the envelope too slowly. As of November 2020, no fewer than eight full-size Starships and the first Super Heavy booster prototype are visibly under construction. Most recently, Starship SN9 was stacked to its full height, kicking off nosecone installation while still at the build site (unlike SN8). SN10’s completed tank section is likely ready to begin flap installation within the next few days, while Starship SN11 is perhaps a week or two behind that. Additionally, large tank sections of Starships SN12, SN13, SN14, SN15, and (most likely) SN16 are already completed and have all been spotted in the last few weeks.
Some ~90% of the above work was likely started after Starship SN8 first left the factory and rolled to the launch pad on September 26th. In many regards, SN8 has been the first to reach multiple major milestones, largely explaining the relatively plodding pace of its test program compared to SN4, SN5, and SN6.


Ultimately, SN9’s imminent completion – effectively a superior, more refined copy of SN8 – means that Starship SN8’s utility to SpaceX is rapidly deteriorating. The company would almost assuredly never skip an opportunity to learn, meaning that there’s no plausible future in which SN8 testing doesn’t continue, but that doesn’t mean that SpaceX can’t turn its risk tolerance to 11. In essence, accept a 67% (or higher) chance of Starship SN8’s violent destruction but learn as much as possible in the process. As long as good data is gathered, SN8’s launch debut will be a success for Starship whether the rocket lands in one or several pieces.
News
Tesla expands its branded ‘For Business’ Superchargers
Tesla has expanded its branded ‘For Business’ Supercharger program that it launched last year, as yet another company is using the platform to attract EV owners to its business and utilize a unique advertising opportunity.
Francis Energy of Oklahoma is launching four Superchargers in Norman, where the University of Oklahoma is located. The Superchargers, which are fitted with branding for Francis Energy, will officially open tomorrow.
It will not be the final Supercharger location that Francis Energy plans to open, the company confirmed to EVWire.
Back in early September, Tesla launched the new “Supercharger for Business” program in an effort to give businesses the ability to offer EV charging at custom rates. It would give their businesses visibility and would also cater to employees or customers.
“Purchase and install Superchargers at your business,” Tesla wrote on a page on its website for the new program. “Superchargers are compatible with all electric vehicles, bringing EV drivers to your business by offering convenient, reliable charging.”
The first site opened in Land O’ Lakes, Florida, which is Northeast of Tampa, as a company called Suncoast launched the Superchargers for local EV owners.
Tesla launches its new branded Supercharger for Business with first active station
The program also does a great job at expanding infrastructure for EV owners, which is something that needs to be done to encourage more people to purchase Teslas and other electric cars.
Francis Energy operates at least 14 EV charging locations in Oklahoma, spanning from Durant to Oklahoma City and nearly everywhere in between. Filings from the company, listed by Supercharge.info, show the company’s plans to convert some of them to Tesla Superchargers, potentially utilizing the new Supercharger for Business program to advertise.
Moving forward, more companies will likely utilize Tesla’s Supercharger for Business program as it presents major advantages in a variety of ways, especially with advertising and creating a place for EV drivers to gain range in their cars.
News
Tesla Cybercab ‘breakdown’ image likely is not what it seems
Tesla Cybercab is perhaps the most highly-anticipated project that the company plans to roll out this year, and as it is undergoing its testing phase in pre-production currently, there are some things to work through with it.
Over the weekend, an image of the Cybercab being loaded onto a tow truck started circulating on the internet, and people began to speculate as to what the issue could be.
Hmmmmmm… https://t.co/L5hWcOXQkb pic.twitter.com/OJBDyHNTMj
— TESLARATI (@Teslarati) January 11, 2026
The Cybercab can clearly be seen with a Police Officer and perhaps the tow truck driver by its side, being loaded onto, or even potentially unloaded from, the truck.
However, it seems unlikely it was being offloaded, as its operation would get it to this point for testing to begin with.
It appears, at first glance, that it needs assistance getting back to wherever it came from; likely Gigafactory Texas or potentially a Bay Area facility.
The Cybercab was also spotted in Buffalo, New York, last week, potentially undergoing cold-weather testing, but it doesn’t appear that’s where this incident took place.
It is important to remember that the Cybercab is currently undergoing some rigorous testing scenarios, which include range tests and routine public road operation. These things help Tesla assess any potential issue the vehicle could run into after it starts routine production and heads to customers, or for the Robotaxi platform operation.
This is not a one-off issue, either. Tesla had some instances with the Semi where it was seen broken down on the side of a highway three years ago. The all-electric Semi has gone on to be successful in its early pilot program, as companies like Frito-Lay and PepsiCo. have had very positive remarks.
The Cybercab’s future is bright, and it is important to note that no vehicle model has ever gone its full life without a breakdown. It happens, it’s a car.
Nevertheless, it is important to note that there has been no official word on what happened with this particular Cybercab unit, but it is crucial to remember that this is the pre-production testing phase, and these things are more constructive than anything.
Investor's Corner
Tesla analyst teases self-driving dominance in new note: ‘It’s not even close’
Tesla analyst Andrew Percoco of Morgan Stanley teased the company’s dominance in its self-driving initiative, stating that its lead over competitors is “not even close.”
Percoco recently overtook coverage of Tesla stock from Adam Jonas, who had covered the company at Morgan Stanley for years. Percoco is handling Tesla now that Jonas is covering embodied AI stocks and no longer automotive.
His first move after grabbing coverage was to adjust the price target from $410 to $425, as well as the rating from ‘Overweight’ to ‘Equal Weight.’
Percoco’s new note regarding Tesla highlights the company’s extensive lead in self-driving and autonomy projects, something that it has plenty of competition in, but has established its prowess over the past few years.
He writes:
“It’s not even close. Tesla continues to lead in autonomous driving, even as Nvidia rolls out new technology aimed at helping other automakers build driverless systems.”
Percoco’s main point regarding Tesla’s advantage is the company’s ability to collect large amounts of training data through its massive fleet, as millions of cars are driving throughout the world and gathering millions of miles of vehicle behavior on the road.
This is the main point that Percoco makes regarding Tesla’s lead in the entire autonomy sector: data is King, and Tesla has the most of it.
One big story that has hit the news over the past week is that of NVIDIA and its own self-driving suite, called Alpamayo. NVIDIA launched this open-source AI program last week, but it differs from Tesla’s in a significant fashion, especially from a hardware perspective, as it plans to use a combination of LiDAR, Radar, and Vision (Cameras) to operate.
Percoco said that NVIDIA’s announcement does not impact Morgan Stanley’s long-term opinions on Tesla and its strength or prowess in self-driving.
NVIDIA CEO Jensen Huang commends Tesla’s Elon Musk for early belief
And, for what it’s worth, NVIDIA CEO Jensen Huang even said some remarkable things about Tesla following the launch of Alpamayo:
“I think the Tesla stack is the most advanced autonomous vehicle stack in the world. I’m fairly certain they were already using end-to-end AI. Whether their AI did reasoning or not is somewhat secondary to that first part.”
Percoco reiterated both the $425 price target and the ‘Equal Weight’ rating on Tesla shares.