Connect with us

News

SpaceX has finally begun filling Starship’s orbital launch site fuel tanks

With Starship fully stacked in the background, SpaceX has finally begun methane deliveries to Starbase's orbital launch pad. (NASASpaceflight - bocachicagal)

Published

on

Almost five months after SpaceX began the process of filling and testing the first custom-built propellant storage system for Starship, the largest rocket ever built, the company has finally begun to fill the fuel half of the ‘tank farm’.

SpaceX began delivering truckloads of liquid nitrogen (LN2) to the LN2 and liquid oxygen (LOx) sections of the tank farm in mid-September 2021, well before the farm was anywhere close to completion. In about a month, SpaceX accepted ~60 LN2 deliveries – enough to partially fill one of the farm’s seven cryogenic tanks. Instead of some operational purpose, that LN2 was likely used to clean and partially proof the farm’s three LOx tanks. Just two weeks later, the orbital tank farm received its first LOx deliveries.

At the time, mere days after the basic structure of the main tank farm storage system was effectively completed, most figured that it would take SpaceX about as long to clean, proof, and begin filling the farm’s two liquid methane tanks. That would not be the case.

SpaceX installed the second of the farm’s two vertical SpaceX-built cryogenic liquid methane (LCH4) tanks in mid-October 2021. All seven cryogenic tanks had ‘sleeves’ – designed to be filled with foam insulation – installed by the end of the month, effectively completing the farm’s basic structure half a year after assembly began. However, around the same time, SpaceX also installed two horizontal tanks that were also identified as LCH4 storage – giving the overall tank farm far more fuel storage than its oxidizer (LOx) tanks could match. Starship’s Raptor engines burn about 3.55 kilograms of LOx for every 1 kilogram of LCH4.

As work on the vertical LCH4 tanks appeared to slow to a crawl, it took until December 2021 for SpaceX to begin cleaning and proofing the farm’s horizontal LCH4 tanks with liquid nitrogen. By that time, a rough unofficial narrative had been constructed to explain the lack of progress on the farm’s fuel half. Namely, in an excellent Twitter thread, CSI Starbase made a strong case that SpaceX appeared to have designed the first orbital-class Starship tank farm – a compact and pleasingly symmetric set of eight vertical storage tanks – without taking into consideration rudimentary Texas regulations for the storage of liquid natural gas and methane. By all appearances, that conclusion was correct, as the farm was visibly violating several rules – namely the requirements that all LCH4 storage be surrounded by six-foot-tall retaining walls and that all associated plumbing not be situated under power cabling.

Advertisement

As it exists, the LCH4 side of the vertical tank farm violates both of those rules and it’s not obvious that there is actually enough space between the two vertical methane tanks to build a retaining wall with two feet of horizontal clearance. It’s possible that the situation is more complex and that SpaceX intentionally broke those rules or was pursuing an exception to them but the end result was that those vertical LCH4 tanks have yet to be finished, let alone cleaned or proof tested. Instead, SpaceX appears to have fully refocused on horizontal tanks and most recently tore down a dirt berm beside them and began preparing foundations for at least two or three more.

Those horizontal tanks appear to store about 1000 cubic meters (~35,000 ft^3) of LCH4, while the vertical tanks would have stored about 1800 m^3. To fully replace them, SpaceX will need approximately four horizontal tanks – two more in addition to the two already installed. Thankfully, SpaceX has finally begun filling the already installed tanks while it works to expand the methane farm, beginning with three truckloads on the very first day – February 13th, 2022.

The orbital tank farm was seriously put through its paces for the first time during Super Heavy B4 cryoproof testing in December 2021. (NASASpaceflight)

To fill the two existing tanks, which may store enough methane to fuel a stacked Starship and Super Heavy about 4/5ths of the way, SpaceX will need around 40-50 more tanker deliveries. Since last November, SpaceX has completed more than 320 liquid nitrogen and 200 liquid oxygen deliveries – equivalent to about 6700 tons (~14.8M lb) of LN2 and 4200 tons (~9.3M lb) of LOx. If SpaceX maintains that average and focuses entirely on LCH4, the two horizontal tanks could be filled to the brim before the end of February.

Having a substantial amount of LCH4 stored at the orbital tank farm will finally allow SpaceX to attempt the first major wet dress rehearsals (WDRs) and, more importantly, the first full static fires with flightworthy Super Heavy booster prototypes. Of course, a tank farm with full supplies of LOx, LCH4, LN2, and their gaseous equivalents is also a necessity for the first orbital Starship launch attempt, which has most recently slipped from a target of mid-2021 to no earlier than (NET) Q2 2022, pending regulatory approval.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla adjusts Robotaxi safety monitor strategy in Austin with new service area

The positioning of the driver, as well as the driver’s hands being closer to the steering wheel, is more similar to what Tesla is doing in the Bay Area Robotaxi program than it is to what it has done in Austin.

Published

on

Credit: @AdanGuajardo/X

Tesla has adjusted its Robotaxi safety monitor strategy in Austin after it expanded its service area in the city last week for the third time.

Tesla has been operating its Robotaxi platform in Austin since June 22. The vehicles have been operated without a driver, but Tesla has placed safety monitors in the passenger’s seat as a precaution.

The safety monitors are responsible for performing any necessary interventions and maintaining a safe and comfortable cabin for riders as they experience Tesla’s first venture into the driverless ride-sharing space.

Last week, Tesla expanded its service area in Austin for the third time, expanding it from about 90 square miles to 170 square miles. The expansion included new territory, including the Austin-Bergstrom International Airport, Tesla’s Gigafactory Texas, and several freeways.

Tesla Robotaxi geofence expansion enters Plaid Mode and includes a surprise

The freeway is an area that is uncharted territory for the Tesla Robotaxi program, and this fact alone encouraged Tesla to switch up its safety monitor positioning for the time being.

For now, they will be riding in the driver’s seat when routes require freeway travel:

The positioning of the driver, as well as the driver’s hands being closer to the steering wheel, is more similar to what Tesla is doing in the Bay Area Robotaxi program than it is to what it has done in Austin.

This is sure to draw criticism from skeptics, but it is simply a step to keep things controlled and safe while the first Robotaxi drives take passengers on the highway with this version of the Full Self-Driving software.

This FSD version differs from the one that customers have in their own vehicles, but CEO Elon Musk has indicated something big is coming soon. FSD v14 is coming to vehicles in the near future, and Musk has said its performance is pretty incredible.

Tesla’s Elon Musk shares optimistic teaser about FSD V14: “Feels sentient”

Continue Reading

News

Tesla has best month ever in Turkey with drastic spike in sales

Tesla managed to sell 8,730 Model Y vehicles in Turkey, outpacing almost every competitor by a substantial margin. Only one brand sold better than Tesla in August in Turkey, and it was Renault.

Published

on

Credit: Tesla

Tesla had its best monthly performance ever in Turkey in August, thanks to a drastic spike in sales.

Tesla saw an 86 percent bump in sales of the new Model Y in Turkey in August compared to July, dominating the market.

The performance was one of Tesla’s best in the market, and the company’s sales for the month accounted for half of all EV sales in Turkey for August, as it dominated and led BYD, which was the second-best-selling brand with just 1,639 units sold.

Tesla managed to sell 8,730 Model Y vehicles in Turkey, outpacing almost every competitor by a substantial margin. Only one brand sold better than Tesla in August in Turkey, and it was Renault.

Electric vehicles are, in some ways, more desirable than their gas counterparts in Turkey for several reasons. Most of the reasoning is financial.

First, EVs are subject to a lower Special Consumption Tax in Turkey. EVs can range from 25 percent to up to 170 percent, but this is less than the 70 to 220 percent rate that gas-powered vehicles can face. The tax is dependent on engine size.

Elon Musk courted to build a Tesla factory in Turkey

Additionally, EVs are exempt from the annual Motor Vehicle Tax for the first ten years, providing consumers with a long-term ownership advantage. There are also credits that can amount to $30,000 in breaks, which makes them more accessible and brings down the cost of ownership.

Let’s not forget the other advantages that are felt regardless of country: cheaper fuel costs, reduced maintenance, and improved performance.

The base Model Y is the only configuration available in Turkey currently.

Continue Reading

News

Tesla is upgrading airbag safety through a crazy software update

“This upgrade builds upon your vehicle’s superior crash protection by now using Tesla Vision to help offer some of the most cutting-edge airbag performance in the event of a frontal crash.”

Published

on

(Credit: Tesla)

Tesla is upgrading airbag safety through a crazy software update, which will utilize the company’s vision-first approach to enable better protection in the event of an accident.

Over the years, Tesla has gained an incredible reputation for prioritizing safety in its vehicles, with crash test ratings at the forefront of its engineers’ minds.

This has led to Tesla gaining numerous five-star safety ratings and awards related to safety. It is not just a statistical thing, either. In the real world, we’ve seen Teslas demonstrate some impressive examples of crash safety.

Everything from that glass roof not caving in when a tree falls on it to a Model Y surviving a drive off a cliff has been recorded.

However, Tesla is always looking to improve safety, and unlike most companies, it does not need a physical hardware update to do so. It can enhance features such as crash response and airbag performance through Over-the-Air software updates, which download automatically to the vehicle.

In Tesla’s 2025.32 Software Update, the company is rolling out a Frontal Airbag System Enhancement, which aims to use Tesla Vision, the company’s camera-based approach to self-driving, to keep occupants safe.

The release notes state (via NotaTeslaApp):

“This upgrade builds upon your vehicle’s superior crash protection by now using Tesla Vision to help offer some of the most cutting-edge airbag performance in the event of a frontal crash. Building on top of regulatory and industry crash testing, this release enables front airbags to begin to inflate and restrain occupants earlier, in a way that only Tesla’s integrated systems are capable of doing, making your car safer over time.”

The use of cameras to predict a better time to restrain occupants with seatbelts and inflate airbags prior to a collision is a fantastic way to prevent injuries and limit harm done to those in the vehicle.

The feature is currently limited to the Model Y.

Continue Reading

Trending