News
SpaceX moving fast on Mars rocket development, BFR tent spied with more tooling
Photos taken by Teslarati photographer Pauline Acalin have confirmed that SpaceX’s massive Mars rocket fabrication tooling has been hiding in plain sight at the company’s Port of San Pedro tent facility.
Spotted inside the temporary structure thanks to open flaps and a human desire for a breeze amidst the warm Los Angeles springtime, the main cylindrical component is truly vast – large enough that the eye almost glazes over it at first glance. Dwarfing the humans clambering about it, very rough estimates using knowledge of the tent’s reported area (20,000 square feet) and size comparisons with machinery blueprints suggest a diameter of around 8-10 meters (26-36 feet), loosely conforming to the expected 9m diameter of BFR, as of CEO Elon Musk’s IAC 2017 update. Recently, however, President Gwynne Shotwell showed off an updated Mars rocket video at TED2018 that led to Musk hinting that BFR may have grown slightly since then.

SpaceX’s massive BFR manufacturing tool peeked out from the company’s Port-side tent facility. (Pauline Acalin)
- SpaceX’s BFR tent and mandrel, caught on April 14th. (Pauline Acalin)
- Like, really big. (Pauline Acalin)
The massive cylindrical structure teased by Musk earlier this month is most likely a mandrel, a tool that can be spun on its horizontal axis to weave predetermined structures. In the case of the Mars rocket mandrel, it will likely be used to carefully wind dozens or hundreds of layers of carbon fiber (known as prepreg), interspersed with layers of laminate and various epoxies and resins. It’s also possible, however, that the massive tool is instead a multipurpose mold and autoclave, where the composite layers would be lain on the inside of the cylinder, allowed to set, and eventually sealed inside and heat/pressure treated.
Images of the machinery are fairly ambiguous: they show a structure that could have connection points one might find on an autoclave, as well as what appears to be a thick and well-insulated internal wall. However, the external skin appears to be a relatively thin sheet of metal, which would point more towards a traditional composite mandrel, where certain sheets could be removed or modified as needed to create desired shapes in the composite while it’s being formed, less risky than machining a completed segment.
- Just a casual line of car-sized steel segments hanging around outside the BFR tent. (Pauline Acalin)
- While unclear, these are likely sections of a layup or mold that will be used to form BFR’s more complex composite components. (Pauline Acalin)
- Shown is the forward fuselage of the 787 on a mandrel for composite weaving and layup.(Boeing)
Perhaps even more interesting, a number of massive metal structures were spotted just outside of the tent. While it is unclear what exactly their purpose was, is, or will be, it’s more likely than not that they are components of a carbon composite mold or layup structure meant to deal with fabrication of certain Mars rocket and spaceship components with complex curves, versus the relatively simple cylinders that BFR and BFS are largely comprised of. Still, precedents exist in large aerospace composite manufacturing for the fabrication of structures with complex curves, most notably the nose and front sections of airliners like Boeing’s 787.
Finally, it’s worth noting just how shockingly busy the BFR tent was on both April 13th and 14th, as well as the 8th (the first day Pauline visited the facility). With upwards of 40 cars parked at the tent, it’s blindingly clear that SpaceX is not simply using the tent as a temporary storage location – alongside the arrival of composite fabrication materials (prepreg sheets, epoxy, etc) from Airtech International, SpaceX undeniably intends to begin initial fabrication of the first BFR prototypes in this tent, although they will likely eventually move the activities to the Berth 240 Mars rocket factory. That’s certainly not a sentence I ever expected to write, but it is what it is.
- Airtech supplies arrive at the BFR tent on April 14. Airtech is a composites supplier with a branch located just miles away from Port of San Pedro. (Pauline Acalin)
- Lots of cars at the BFR tent. This also provides a sense of scale for the tent’s absolutely massive access flaps. (Pauline Acalin)
- April 2018. (Pauline Acalin)
SpaceX’s giant, temporary tent currently housing the company’s BFR/BFS fabrication tooling while their permanent facility awaits construction a couple miles away. #SpaceX #BFR pic.twitter.com/a8Tj6QLmUz
— Pauline Acalin (@w00ki33) April 15, 2018
Follow us for live updates, behind-the-scenes sneak peeks, and a sea of beautiful photos from our East and West coast photographers.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.









