Connect with us

News

SpaceX’s Crew Dragon spaceship nears first orbital launch test

Published

on

After roughly five years of concerted development, SpaceX CEO Elon Musk has released the first official photo of the company’s Crew Dragon, a version of their orbital spacecraft designed and optimized to reliably return humans to orbit from United States soil.

Traceable back to the very beginning of SpaceX’s first Dragon development program, where the company hoped to easily modify the Cargo Dragon capsule design to support crewed missions, the results of the years of work that followed instead focused on an extensive redesign originally intended to be capable of powered landings similar to Falcon 9 boosters. However, likely the result of an immense certification burden to ever hope to have NASA okay its operational usage, SpaceX chose to kill the landing program in favor of a more traditional ocean splashdown style of return. Extendable leglets were thus removed from the design’s heat shield, a change that also ended any hopes of SpaceX’s plans to partner with NASA and land an unprecedented payload on the surface of Mars, known as Red Dragon.

That announcement came in the summer of 2017. Ten quiet months later, Musk confirmed April updates from NASA’s Commercial Crew Program managers with a photo of the first flight-worthy Crew Dragon in SpaceX’s anechoic chamber, ahead of shipment to NASA’s Plum Brook facility for full-up spacecraft testing in vacuum conditions.

While it may look like a completely different design, much of Crew Dragon has a significant level of heritage with the readily flight-proven Cargo Dragon spacecraft, including avionics, parachutes, heat shield expertise, and Draco maneuvering thrusters. The most obvious difference can be found in the four black bays spaced evenly around the edge of the capsule – these contain two SuperDraco thrusters each (eight total) that together act as an integrated launch abort system, capable of launching the capsule and trunk to safety in fractions of a second in the event of Falcon 9 failure at any point during launch. A test of this hardware was first completed almost exactly three years ago, demonstrating acceleration from stand-still to 100 mph in less than a single second.

Advertisement

The hardware shown in Elon Musk’s photo is not intended to carry humans (not on its first flight, at least), instead aiming to be the first Crew Dragon article to make it into Earth orbit, where SpaceX technicians and engineers will conduct and observe a vast fleet of tests with the intent of proving the craft’s capabilities. If successful, this mission (known as DM-1) will be the final step SpaceX needs to complete before DM-2, the upgraded spacecraft’s first real crewed mission.

As of now, DM-1 and DM-2 are officially scheduled for no earlier than (NET) August 31 and December 31 respectively. However, those dates are very unlikely to hold. Per sources with knowledge of Crew Dragon’s progress, DM-2 is currently scheduled for launch NET 2019, likely sometime in the first or second quarter. DM-1, while certainly not ready for an August 31 launch, does appear to be tracking towards a launch later this year, most likely in Q4 2018. SpaceX technicians are working around the clock to ready this groundbreaking hardware for its trip to Plum Brook and eventually to space, spending long shifts in the belly of the Dragon to ensure everything is working as intended.

 

Advertisement

Falcon 9 Block 5, which successfully completed its inaugural launch earlier this month, is another critical path for SpaceX’s first crewed mission (DM-2). As of now, NASA’s Aerospace Safety Advisory Panel (ASAP) has advised NASA to require seven full-up successful launches of the Block 5 iteration before allowing crew to fly on the rocket. In order for SpaceX to achieve that milestone in time for a crewed launch in early 2019, Falcon 9 Block 5 will need to fly (and refly) flawlessly over the course of the second half of 2018. While unclear if ASAP will accept flight-proven launches of the upgraded rocket for its fairly arbitrary “seven launches” requirement, SpaceX will need to rely heavily on Block 5 reflights if they hope to complete as many as 30 launches total this year.

As of now, the next launch of Falcon 9 Block 5 is likely to occur sometime in June, with three total Block 5 flights tentatively scheduled before mid-July. If SpaceX can pull those launches off, it will act as a huge bode of confidence for the future of the rocket, as well as the future of Crew Dragon.

Crew Dragon tests its SuperDraco-powered launch abort system. (SpaceX)

Follow us for live updates, behind-the-scenes sneak peeks, and a sea of beautiful photos from our East and West coast photographers.

Teslarati   –   Instagram Twitter

Tom CrossTwitter

Advertisement

Pauline Acalin  Twitter

Eric Ralph Twitter

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla owners surpass 8 billion miles driven on FSD Supervised

Tesla shared the milestone as adoption of the system accelerates across several markets.

Published

on

Credit: Tesla

Tesla owners have now driven more than 8 billion miles using Full Self-Driving Supervised, as per a new update from the electric vehicle maker’s official X account. 

Tesla shared the milestone as adoption of the system accelerates across several markets.

“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average. 

The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.

Advertisement

At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.

Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.

As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.

During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.

Advertisement
Continue Reading

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading