News
SpaceX Falcon 9 Block 5 rocket’s drone ship return captured in stunning detail [gallery]
Teslarati photographer Pauline Acalin has captured SpaceX’s first West Coast Falcon 9 Block 5 booster recovery in the best detail yet seen of the rocket upgrade, well-worn after its first successful launch of Iridium NEXT-7, July 25.
Iridium-7 marked a number of important debuts for SpaceX: Falcon 9 Block 5 (Booster 1048, in this case) completed its first West Coast launch from SpaceX’s Vandenberg pad, drone ship Just Read The Instructions’ (JRTI) first rocket recovery attempt and success in nearly ten months, and recovery vessel Mr Steven’s first (albeit unsuccessful) attempt at catching a Falcon fairing with a dramatically enlarged net and arms.
- B1048 returns to port on drone ship JRTI after its successful July 2019 launch debut. (Pauline Acalin)
Although inclement wind conditions foiled Mr Steven’s fairing catch effort and put pressure on Falcon 9 B1048’s journey to JRTI, Iridium-7 was flawlessly placed in orbit and Falcon 9 managed a slightly off-center but still thoroughly successful landing on the drone ship off the coast of California. With that launch and land debut on the West Coast and a second successful East Coast launch of a Block 5 rocket to the East just a few days prior, SpaceX has effectively demonstrated the basic functionality and reliability of the upgrade’s many far-reaching changes to the underlying Falcon 9 architecture.
Recovered booster 1048’s single-piece cast titanium grid fins. They were able to maneuver the vehicle through stormy winds at sea, landing it safely on Just Read the Instructions following Iridium-7 launch. #spacex #iridium7 #falcon9 pic.twitter.com/yATFVrjGjc
— Pauline Acalin (@w00ki33) July 29, 2018
Just Read The Instructions recovers a rocket
After nearly ten months largely spent berthed at SpaceX’s original Port of San Pedro dock space, drone ship JRTI has at long last returned to sea and successfully recovered a Falcon 9 booster, this time marking the West Coast launch and landing debut of the Block 5 rocket. Photos of the drone ship and rocket’s return to port were some of the best ever seen, thanks largely to the port’s layout and narrow mouth, which allowed Teslarati photographer Pauline Acalin to put giant telephoto lenses and a unique top-down perspective to good use.
Iridium NEXT-7 thankfully brought an end to the understandable but still-painful practice of intentionally expending twice-flown Falcon 9 boosters in the ocean after launch. Thanks to Iridium-7’s new Block 5 booster, B1048, expending the rocket was out of the question, as it likely will be for most Block 5 launches in the future. A combination of several expendable missions and an unfortunate duo of recovery anomalies (a small fire after Koreasat 5A and the Falcon Heavy center core landing failure) led to JRTI sitting on the sidelines since October 2017, as a considerable subset of its critical thruster hardware had to be stripped in order to keep East Coast sister ship Of Course I Still Love You (OCISLY) operational for a handful of attempts in 2018.
- Falcon 9 B1048 returns to Port of Los Angeles aboard drone ship Just Read The Instructions, July 27. (Pauline Acalin)
- Falcon 9 B1048 returned to Port of Los Angeles aboard drone ship Just Read The Instructions after its first launch. July 27. (Pauline Acalin)
- Falcon 9 B1048 returns to Port of Los Angeles aboard drone ship Just Read The Instructions, July 27. (Pauline Acalin)
- Falcon 9 B1048 returns to Port of Los Angeles aboard drone ship Just Read The Instructions, July 27. (Pauline Acalin)
- Falcon 9 B1048 returns to Port of Los Angeles aboard drone ship Just Read The Instructions, July 27. (Pauline Acalin)
Many of the months JRTI spent at berth were thus without the pod thrusters the drone ship needs to keep itself at the proper landing point once at sea. Still, JRTI departed the port with a full complement of four blue thrusters on the evening of July 22 and had a highly successful return-to-action. Sadly, it’s unclear how much SpaceX will need the vessel within just a month or two from today – after the final Iridium launch (NEXT-8) in November or December, perhaps all of SpaceX’s future Vandenberg launches will be lofting lightweight payloads that should allow the company to rely almost entirely on its brand-new rocket landing zone – conveniently colocated barely 1000 feet from the pad – for CA rocket recoveries.
F9 Block 5 shows off its upgraded exterior
Falcon 9 Block 5 booster (B1048) arrived at Port of Los Angeles on July 27 after landing at sea aboard drone ship JRTI. Photos captured by Pauline arguably show the best details yet seen of the rocket upgrade, ranging from titanium grid fins to extraordinary shots of its sooty-but-still-sorta-shiny Merlin 1D engines.
- B1048 arrives in Port of LA aboard drone ship JRTI. (Pauline Acalin)
- B1048, one launch down and dozens to come. (Pauline Acalin)
- B1048, one launch down and many more to come. (Pauline Acalin)
- B1048’s beautiful Block 5 Merlins, showing off their subtle shine despite a healthy coating of soot. (Pauline Acalin)
Myriad others provide an amazing sense of place with SpaceX technicians conducting thorough post-landing checkouts, carefully documenting the booster’s condition, and generally wrenching on a massive, orbital-class rocket that completed a suborbital jaunt to space just days prior.
Of particular note are detailed views of the silky black “highly flame-resistant felt” now covering Falcon 9’s interstage (the top segment), landing legs, octaweb section, and raceways (the black lines traveling up and down the rocket). Compared to beat-up, older Falcon 9s, B1048’s shielded components look barely worse for wear, and it would genuinely be difficult to determine if the rocket had flown before without the telltale soot fingerprint present after every Falcon 9 recovery.
- A little of everything: landing leg, octaweb, Merlin 1Ds, and drone ship JRTI. (Pauline Acalin)
- B1048’s octaweb attach points for a huge range of fluids and propellants. (Pauline Acalin)
- A SpaceX recovery technician documents one of Falcon 9 B1048’s quick-disconnect panels. (Pauline Acalin)
- One of B1048’s four upgraded landing legs. (Pauline Acalin)
- And another view of B1048’s beautifully intricate leg hardware. (Pauline Acalin)
The only mystery that still remains is what exactly Falcon 9 Block 5’s octaweb heat-shielding looks like, reportedly one of the most critical and research-intensive upgrades necessary for true rapid reusability and reliability through many, many flights. Now built largely of titanium bolted to the octaweb, among a number of other extremely heat-tolerant metals and materials and even active water-cooling in spots, the new heat-shield was designed to carry the brunt of the reentry heating Falcon 9 experiences with ease.
Perhaps we’ll get a glimpse of that yet-unseen heat-shield over the next few weeks and months. Many, many more launches to come, so stay tuned!
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet (including fairing catcher Mr Steven) check out our brand new LaunchPad and LandingZone newsletters!
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.














