News
SpaceX Falcon 9 Block 5 rocket’s drone ship return captured in stunning detail [gallery]
Teslarati photographer Pauline Acalin has captured SpaceX’s first West Coast Falcon 9 Block 5 booster recovery in the best detail yet seen of the rocket upgrade, well-worn after its first successful launch of Iridium NEXT-7, July 25.
Iridium-7 marked a number of important debuts for SpaceX: Falcon 9 Block 5 (Booster 1048, in this case) completed its first West Coast launch from SpaceX’s Vandenberg pad, drone ship Just Read The Instructions’ (JRTI) first rocket recovery attempt and success in nearly ten months, and recovery vessel Mr Steven’s first (albeit unsuccessful) attempt at catching a Falcon fairing with a dramatically enlarged net and arms.
- B1048 returns to port on drone ship JRTI after its successful July 2019 launch debut. (Pauline Acalin)
Although inclement wind conditions foiled Mr Steven’s fairing catch effort and put pressure on Falcon 9 B1048’s journey to JRTI, Iridium-7 was flawlessly placed in orbit and Falcon 9 managed a slightly off-center but still thoroughly successful landing on the drone ship off the coast of California. With that launch and land debut on the West Coast and a second successful East Coast launch of a Block 5 rocket to the East just a few days prior, SpaceX has effectively demonstrated the basic functionality and reliability of the upgrade’s many far-reaching changes to the underlying Falcon 9 architecture.
Recovered booster 1048’s single-piece cast titanium grid fins. They were able to maneuver the vehicle through stormy winds at sea, landing it safely on Just Read the Instructions following Iridium-7 launch. #spacex #iridium7 #falcon9 pic.twitter.com/yATFVrjGjc
— Pauline Acalin (@w00ki33) July 29, 2018
Just Read The Instructions recovers a rocket
After nearly ten months largely spent berthed at SpaceX’s original Port of San Pedro dock space, drone ship JRTI has at long last returned to sea and successfully recovered a Falcon 9 booster, this time marking the West Coast launch and landing debut of the Block 5 rocket. Photos of the drone ship and rocket’s return to port were some of the best ever seen, thanks largely to the port’s layout and narrow mouth, which allowed Teslarati photographer Pauline Acalin to put giant telephoto lenses and a unique top-down perspective to good use.
Iridium NEXT-7 thankfully brought an end to the understandable but still-painful practice of intentionally expending twice-flown Falcon 9 boosters in the ocean after launch. Thanks to Iridium-7’s new Block 5 booster, B1048, expending the rocket was out of the question, as it likely will be for most Block 5 launches in the future. A combination of several expendable missions and an unfortunate duo of recovery anomalies (a small fire after Koreasat 5A and the Falcon Heavy center core landing failure) led to JRTI sitting on the sidelines since October 2017, as a considerable subset of its critical thruster hardware had to be stripped in order to keep East Coast sister ship Of Course I Still Love You (OCISLY) operational for a handful of attempts in 2018.
- Falcon 9 B1048 returns to Port of Los Angeles aboard drone ship Just Read The Instructions, July 27. (Pauline Acalin)
- Falcon 9 B1048 returned to Port of Los Angeles aboard drone ship Just Read The Instructions after its first launch. July 27. (Pauline Acalin)
- Falcon 9 B1048 returns to Port of Los Angeles aboard drone ship Just Read The Instructions, July 27. (Pauline Acalin)
- Falcon 9 B1048 returns to Port of Los Angeles aboard drone ship Just Read The Instructions, July 27. (Pauline Acalin)
- Falcon 9 B1048 returns to Port of Los Angeles aboard drone ship Just Read The Instructions, July 27. (Pauline Acalin)
Many of the months JRTI spent at berth were thus without the pod thrusters the drone ship needs to keep itself at the proper landing point once at sea. Still, JRTI departed the port with a full complement of four blue thrusters on the evening of July 22 and had a highly successful return-to-action. Sadly, it’s unclear how much SpaceX will need the vessel within just a month or two from today – after the final Iridium launch (NEXT-8) in November or December, perhaps all of SpaceX’s future Vandenberg launches will be lofting lightweight payloads that should allow the company to rely almost entirely on its brand-new rocket landing zone – conveniently colocated barely 1000 feet from the pad – for CA rocket recoveries.
F9 Block 5 shows off its upgraded exterior
Falcon 9 Block 5 booster (B1048) arrived at Port of Los Angeles on July 27 after landing at sea aboard drone ship JRTI. Photos captured by Pauline arguably show the best details yet seen of the rocket upgrade, ranging from titanium grid fins to extraordinary shots of its sooty-but-still-sorta-shiny Merlin 1D engines.
- B1048 arrives in Port of LA aboard drone ship JRTI. (Pauline Acalin)
- B1048, one launch down and dozens to come. (Pauline Acalin)
- B1048, one launch down and many more to come. (Pauline Acalin)
- B1048’s beautiful Block 5 Merlins, showing off their subtle shine despite a healthy coating of soot. (Pauline Acalin)
Myriad others provide an amazing sense of place with SpaceX technicians conducting thorough post-landing checkouts, carefully documenting the booster’s condition, and generally wrenching on a massive, orbital-class rocket that completed a suborbital jaunt to space just days prior.
Of particular note are detailed views of the silky black “highly flame-resistant felt” now covering Falcon 9’s interstage (the top segment), landing legs, octaweb section, and raceways (the black lines traveling up and down the rocket). Compared to beat-up, older Falcon 9s, B1048’s shielded components look barely worse for wear, and it would genuinely be difficult to determine if the rocket had flown before without the telltale soot fingerprint present after every Falcon 9 recovery.
- A little of everything: landing leg, octaweb, Merlin 1Ds, and drone ship JRTI. (Pauline Acalin)
- B1048’s octaweb attach points for a huge range of fluids and propellants. (Pauline Acalin)
- A SpaceX recovery technician documents one of Falcon 9 B1048’s quick-disconnect panels. (Pauline Acalin)
- One of B1048’s four upgraded landing legs. (Pauline Acalin)
- And another view of B1048’s beautifully intricate leg hardware. (Pauline Acalin)
The only mystery that still remains is what exactly Falcon 9 Block 5’s octaweb heat-shielding looks like, reportedly one of the most critical and research-intensive upgrades necessary for true rapid reusability and reliability through many, many flights. Now built largely of titanium bolted to the octaweb, among a number of other extremely heat-tolerant metals and materials and even active water-cooling in spots, the new heat-shield was designed to carry the brunt of the reentry heating Falcon 9 experiences with ease.
Perhaps we’ll get a glimpse of that yet-unseen heat-shield over the next few weeks and months. Many, many more launches to come, so stay tuned!
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet (including fairing catcher Mr Steven) check out our brand new LaunchPad and LandingZone newsletters!
News
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.
The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.
Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:
I am in a robotaxi without safety monitor pic.twitter.com/fzHu385oIb
— TSLA99T (@Tsla99T) January 22, 2026
Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.
Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:
Robotaxi rides without any safety monitors are now publicly available in Austin.
Starting with a few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors, and the ratio will increase over time. https://t.co/ShMpZjefwB
— Ashok Elluswamy (@aelluswamy) January 22, 2026
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.
In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.
While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.
Investor's Corner
Tesla Earnings Call: Top 5 questions investors are asking
Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.
The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.
Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.
There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:
- You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
- Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
- When is FSD going to be 100% unsupervised?
- Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
- What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
- Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
- Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
- Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
- Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
- Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.
Tesla will have its Earnings Call on Wednesday, January 28.
Elon Musk
Elon Musk shares incredible detail about Tesla Cybercab efficiency
Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.
ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.
The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.
Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.
Probably true
— Elon Musk (@elonmusk) January 22, 2026
ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest
This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.
The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.
Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.
Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.
It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:
“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”














