Connect with us

News

SpaceX Falcon Heavy rocket to launch NASA’s Roman Space Telescope

Published

on

NASA has chosen SpaceX’s Falcon Heavy rocket to launch its next major space telescope, a wide-field observatory that should directly complement the brand new James Webb Space Telescope.

Originally known as the Wide Field InfraRed Survey Telescope (WFIRST), NASA recently renamed the mission in honor of Nancy Grace Roman, a foundational force behind the Hubble Space Telescope. Fittingly, the Roman Space Telescope’s basic design is reminiscent of Hubble in many ways, owing to the fact that the mission exists solely because the US National Reconnaissance Office (NRO) chose to donate an unused multi-billion-dollar spy satellite – a satellite that was effectively a secret Earth-facing version of Hubble.

However, thanks to decades of improvements in electronics, electromechanics, and the instrumentation side of spacecraft and space telescopes, RST will be dramatically more capable than the Hubble telescope it resembles. And now, after a several-year fight for survival, the Roman Space Telescope officially has a ride to space – SpaceX’s Falcon Heavy rocket.

Falcon Heavy continues to be a bit of a paradox, winning contract after contract for increasingly high-value flagship launches despite having not launched once in more than three years. It’s a bit of a self-fulfilling prophecy, at this point, as the major missions that are increasingly being entrusted to Falcon Heavy are far more likely to run into significant spacecraft-side delays. At one point in late 2021, for example, SpaceX had five Falcon Heavy launches tentatively planned in 2022 – all but one of which had already been delayed several months to a year or more. Seven months into 2022, not one of those missions has launched and it’s looking increasingly likely that Falcon Heavy will be lucky to fly at all this year.

Nonetheless, the Roman Space Telescope joins an impressive manifest that includes the multi-billion-dollar GOES-U weather satellite, NASA’s ~$5 billion Europa Clipper, two modules (HALO and PPE) of a Moon-orbiting space station, NASA’s Psyche asteroid explorer, a large Astrobotic Griffin lander carrying NASA’s VIPER Moon rover, two large geostationary communications satellites, and three missions for the US military. RST is the rocket’s 11th launch contract between now and the mid-2020s.

Advertisement

Despite having a similar resolving power, RST’s primary wide-field instrument will have a field of view 100 times greater than Hubble, meaning that the new telescope will be able to gather magnitudes more data in a similar time. Its primary goals include measuring “light from a billion galaxies over the course of the mission lifetime” and performing “a microlensing survey of the inner Milky Way to find ~2,600 exoplanets.” A second coronagraph instrument will “perform high-contrast imaging and spectroscopy of dozens of individual nearby exoplanets.” According to the Jet Propulsion Laboratory, “the Coronagraph provides a crucial stepping stone in the preparation of future missions aiming to [directly] image and characterize Earth-like planets [that are] 10 billion times fainter than their host star.”

According to NASA, “the telescope’s science program also includes dedicated investigations to tackle outstanding questions [about the nature and] effects of dark energy and dark matter, as well as a substantial general investigator program to enable further studies of astrophysical phenomena to advance other science goals.”

Because RST is also focused on infrared wavelengths of light, it could be an excellent companion to the James Webb Space Telescope (JWST). Whereas RST is a wide-field survey observatory that aims to observe and catalog billions of galaxies, stars, and planets, JWST’s far larger mirror is optimized for up-close observation of individual targets or deep gazes into tiny swaths of sky. RST could ultimately work a bit like an MRI or CAT scan to JWST’s biopsy, telling the surgeon where to look but only hinting at what it might find.

According to NASA, the ~$4.3 billion space telescope’s Falcon Heavy launch contract will cost an exceptionally steep $255 million to send the spacecraft to the Sun-Earth L2 Lagrange point about 800,000 kilometers (~500,000 mi) from Earth. NASA’s contract to launch the even more expensive Europa Clipper spacecraft all the way to Jupiter with a fully-expendable Falcon Heavy rocket is expected to cost less than $180 million.

NASA’s press release also claims that RST will be ready to launch as early as October 2026. A different press release from September 2021 did not mention the 2026 target and only noted that RST’s launch is scheduled no later than May 2027.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Published

on

Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.

The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.

Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:

Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.

Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.

In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.

While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.

Continue Reading

Investor's Corner

Tesla Earnings Call: Top 5 questions investors are asking

Published

on

(Credit: Tesla)

Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.

The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.

Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.

There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:

SpaceX IPO is coming, CEO Elon Musk confirms

  1. You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
    1. Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
  2. When is FSD going to be 100% unsupervised?
    1. Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
  3. What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
    1. Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
  4. Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
    1. Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
  5. Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
    1. Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.

Tesla will have its Earnings Call on Wednesday, January 28.

Continue Reading

Elon Musk

Elon Musk shares incredible detail about Tesla Cybercab efficiency

Published

on

(Credit: Tesla North America | X)

Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.

ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.

The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.

Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.

ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest

This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.

The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.

Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.

Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.

It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Continue Reading