News
SpaceX’s Falcon Heavy flies a complex mission for the Air Force in launch video
SpaceX has gone to unique lengths for the third launch of its Falcon Heavy rocket and made an exhaustive webpage dedicated to the mission, reviewing its importance to SpaceX and the United States and discussing most of its 23 manifested spacecraft.
Known as the US Air Force’s Space Test Program 2 (STP-2) mission, Falcon Heavy Flight 3 will be a critical pathfinder for the US military’s systematic utilization of both Falcon Heavy and its flight-proven boosters.
The STP-2 mission will be among the most challenging launches in SpaceX history with four separate upper-stage engine burns, three separate deployment orbits, a final propulsive passivation maneuver and a total mission duration of over six hours. [It] will demonstrate the capabilities of the Falcon Heavy launch vehicle and provide critical data supporting certification for future National Security Space Launch (NSSL) missions. In addition, [the USAF] will use this mission as a pathfinder for the [military’s systematic utilization of flight-proven] launch vehicle boosters.
SpaceX, April 2019
SpaceX offers a very effective summary of the various challenges presented by Falcon Heavy’s STP-2 mission and third launch. It’s as challenging as it is for one very specific and largely artificial reason. All the way back in 2012, the USAF contracted the launch to give SpaceX a low-risk opportunity to demonstrate specific capabilities the military branch requires before they certify a given rocket to launch high-value payloads. Originally intended to fly STP-2 in mid-2015, Falcon Heavy suffered almost five years of delays during its development, caused by a combination of unexpected technical difficulties and two catastrophic Falcon 9 failures in 2015 and 2016.

After spending the whole of 2017 gradually catching up on delayed customer launches, SpaceX successfully conducted Falcon Heavy’s launch debut on February 6th, 2018. Four months later, the Air Force announced that it had completed the SpaceX rocket’s preliminary certification and awarded the company a $130M launch contract for AFSPC-52, a classified military satellite. According to documents describing the mission, the satellite weighs approximately 6350 kg (~14,000 lb) and needs to be placed into a geostationary transfer orbit (GTO) measuring 35,188km X 185km (21,850 mi X 115 mi).
Conveniently, Falcon Heavy’s commercial launch debut saw the massive rocket deliver the communications satellite Arabsat 6A – weighing ~6450 kg (~14,200 lb) – into an extremely high GTO, almost 90,000 km X 330 km (56,000 mi X 205 mi). In simpler terms, Falcon Heavy Flight 2 was an almost perfect demonstration that SpaceX is more than capable of successfully launching AFSPC-52, a milestone that could come as early as H2 2020.


The STP-2 mission should help to boost the US military’s confidence in Falcon Heavy even further. The mission is comprised of 23 separate satellites from a dozen or so different groups, ranging from a NOAA weather satellite constellation to a NASA-built atomic clock. The purpose of such a varied range of payloads is to have SpaceX’s Falcon upper stage (S2) place three separate sets into three distinctly different Earth orbits, a challenge that will require the rocket to ignite its Merlin Vacuum engine four times and survive in space for more than six hours.
SpaceX has been testing this critical long-coast technology since at least February 2018, when Falcon Heavy’s debut included a six-hour coast of the upper stage to send a Tesla Roadster on an Earth escape trajectory. SpaceX completed that test successfully and said Roadster is now orbiting the sun on a trajectory that regularly reaches beyond the orbit of Mars. SpaceX has continued to test the longevity of its universal Falcon upper stage, including a handful of on-orbit demonstrations after completing customer missions.
Aside from opening the door for new areas of competition in military launch procurement, successfully proving the long-coast capabilities of the Falcon upper stage will also mean that SpaceX can offer them commercially. Military launches often require long coasts in order to get spacecraft to their operating orbits as quickly as possible, typically involving an upper stage burning at the top of a transfer orbit to circularize said orbit. This capability can also be of significant value to non-government customers, however, as the faster a satellite can get to its operational orbit, the faster its owner can start using it to generate revenue. Traditionally, most commercial geostationary communications satellites are sent to transfer orbits, raising one end of the orbit (apogee) but leaving the low end (perigee) in low Earth orbit. Satellites then use their own propulsion systems to circularize their orbits before they can begin commercial operations.
It’s safe to assume that SpaceX is interested in commercially offering services like those above to make Falcon Heavy even more competitive with the likes of ULA’s Atlas/Delta/Vulcan rockets and Arianespace’s Ariane 5 and Ariane 6. The US military will almost certainly be the anchor customer, but a reliable upper stage with long-coast capabilities may one day allow Falcon Heavy to routinely launch commercial satellites directly into circular orbits or send flagship NASA spacecraft into deep space. But first, STP-2. According to Taiwan space agency NSPO, involved in the mission through their Formosat-7 constellation (also known as NOAA’s COSMIC-2), Falcon Heavy could launch STP-2 as early as June 22nd.
SpaceX’s dedicated STP-2 webpage can be viewed here.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla accused of infringing robotics patents in new lawsuit
Tesla is being accused of infringing robotics patents by a company called Perrone Robotics, which is based out of Charlottesville, Virginia.
The suit was filed in Alexandria, Virginia, and accuses Tesla of knowingly infringing upon five patents related to robotics systems for self-driving vehicles.
The company said its founder, Paul Perrone, developed general-purpose robotics operating systems for individual robots and automated devices.
Perrone Robotics claims that all Tesla vehicles utilizing the company’s Autopilot suite within the last six years infringe the five patents, according to a report from Reuters.
Tesla’s new Safety Report shows Autopilot is nine times safer than humans
One patent was something the company attempted to sell to Tesla back in 2017. The five patents cover a “General Purpose Operating System for Robotics,” otherwise known as GPROS.
The GPROS suite includes extensions for autonomous vehicle controls, path planning, and sensor fusion. One key patent, U.S. 10,331,136, was explicitly offered to Tesla by Perrone back in 2017, but the company rejected it.
The suit aims to halt any further infringements and seeks unspecified damages.
This is far from the first suit Tesla has been involved in, including one from his year with Perceptive Automata LLC, which accused Tesla of infringing on AI models to interpret pedestrian/cyclist intent via cameras without licensing. Tesla appeared in court in August, but its motion to dismiss was partially denied earlier this month.
Tesla also settled a suit with Arsus LLC, which accused Autopilot’s electronic stability features of infringing on rollover prevention tech. Tesla won via an inter partes review in September.
Most of these cases involve non-practicing entities or startups asserting broad autonomous vehicle patents against Tesla’s rapid iteration.
Tesla typically counters with those inter partes reviews, claiming invalidity. Tesla has successfully defended about 70 percent of the autonomous vehicle lawsuits it has been involved in since 2020, but settlements are common to avoid discovery costs.
The case is Perrone Robotics Inc v Tesla Inc, U.S. District Court, Eastern District of Virginia, No. 25-02156. Tesla has not yet listed an attorney for the case, according to the report.
News
Tesla has passed a critical self-driving milestone Elon Musk listed in Master Plan Part Deux
Tesla China announced that the company’s Autopilot system has accumulated 10 billion kilometers of driving experience.
Tesla has passed a key milestone, and it was one that CEO Elon Musk initially mentioned more than nine years ago when he published Master Plan, Part Deux.
As per Tesla China in a post on its official Weibo account, the company’s Autopilot system has accumulated over 10 billion kilometers of real-world driving experience.
Tesla China’s subtle, but huge announcement
In its Weibo post, Tesla China announced that the company’s Autopilot system has accumulated 10 billion kilometers of driving experience. “In this respect, Tesla vehicles equipped with Autopilot technology can be considered to have the world’s most experienced and seasoned driver.”
Tesla AI’s handle on Weibo also highlighted a key advantage of the company’s self-driving system. “It will never drive under the influence of alcohol, be distracted, or be fatigued,” the team wrote. “We believe that advancements in Autopilot technology will save more lives.”
Tesla China did not clarify exactly what it meant by “Autopilot” in its Weibo post, though the company’s intense focus on FSD over the past years suggests that the term includes miles that were driven by FSD (Beta) and Full Self-Driving (Supervised). Either way, 10 billion cumulative miles of real-world data is something that few, if any, competitors could compete with.

Elon Musk’s 10-billion-km estimate, way back in 2016
When Elon Musk published Master Plan Part Deux, he outlined his vision for the company’s autonomous driving system. At the time, Autopilot was still very new, though Musk was already envisioning how the system could get regulatory approval worldwide. He estimated that worldwide regulatory approval will probably require around 10 billion miles of real-world driving data, which was an impossible-sounding amount at the time.
“Even once the software is highly refined and far better than the average human driver, there will still be a significant time gap, varying widely by jurisdiction, before true self-driving is approved by regulators. We expect that worldwide regulatory approval will require something on the order of 6 billion miles (10 billion km). Current fleet learning is happening at just over 3 million miles (5 million km) per day,” Musk wrote.
It’s quite interesting but Tesla is indeed getting regulatory approval for FSD (Supervised) at a steady pace today, at a time when 10 billion miles of data has been achieved. The system has been active in the United States and has since been rolled out to other countries such as Australia, New Zealand, China, and, more recently, South Korea. Expectations are high that Tesla could secure FSD approval in Europe sometime next year as well.
Elon Musk
SpaceX maintains unbelievable Starship target despite Booster 18 incident
It appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement.
SpaceX recently shared an incredibly ambitious and bold update about Starship V3’s 12th test flight.
Despite the anomaly that damaged Booster 18, SpaceX maintained that it was still following its plans for the upgraded spacecraft and booster for the coming months. Needless to say, it appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement.
Starship V3 is still on a rapid development path
SpaceX’s update was posted through the private space company’s official account on social media platform X. As per the company, “the Starbase team plans to have the next Super Heavy booster stacked in December, which puts it on pace with the test schedule planned for the first Starship V3 vehicle and associated ground systems.”
SpaceX then announced that Starship V3’s maiden flight is still expected to happen early next year. “Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X.
Elon Musk mentioned a similar timeline on X earlier this year. In the lead up to Starshp Flight 11, which proved flawless, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.” Musk has also mentioned that Starship V3 should be good enough to use for initial Mars missions.
Booster 18 failure not slowing Starship V3’s schedule
SpaceX’s bold update came after Booster 18 experienced a major anomaly during gas system pressure testing at SpaceX’s Massey facility in Starbase, Texas. SpaceX confirmed in a post on X that no propellant was loaded, no engines were installed, and personnel were positioned at a safe distance when the booster’s lower section crumpled, resulting in no injuries.
Still, livestream footage showed significant damage around the liquid oxygen tank area of Booster 18, leading observers to speculate that the booster was a total loss. Booster 18 was among the earliest vehicles in the Starship V3 series, making the failure notable. Despite the setback, Starship V3’s development plans appear unchanged, with SpaceX pushing ahead of its Q1 2026 test flight target.