Connect with us

News

SpaceX’s Falcon Heavy flies a complex mission for the Air Force in launch video

Published

on

SpaceX has gone to unique lengths for the third launch of its Falcon Heavy rocket and made an exhaustive webpage dedicated to the mission, reviewing its importance to SpaceX and the United States and discussing most of its 23 manifested spacecraft.

Known as the US Air Force’s Space Test Program 2 (STP-2) mission, Falcon Heavy Flight 3 will be a critical pathfinder for the US military’s systematic utilization of both Falcon Heavy and its flight-proven boosters.

The STP-2 mission will be among the most challenging launches in SpaceX history with four separate upper-stage engine burns, three separate deployment orbits, a final propulsive passivation maneuver and a total mission duration of over six hours. [It] will demonstrate the capabilities of the Falcon Heavy launch vehicle and provide critical data supporting certification for future National Security Space Launch (NSSL) missions. In addition, [the USAF] will use this mission as a pathfinder for the [military’s systematic utilization of flight-proven] launch vehicle boosters.

SpaceX, April 2019

SpaceX offers a very effective summary of the various challenges presented by Falcon Heavy’s STP-2 mission and third launch. It’s as challenging as it is for one very specific and largely artificial reason. All the way back in 2012, the USAF contracted the launch to give SpaceX a low-risk opportunity to demonstrate specific capabilities the military branch requires before they certify a given rocket to launch high-value payloads. Originally intended to fly STP-2 in mid-2015, Falcon Heavy suffered almost five years of delays during its development, caused by a combination of unexpected technical difficulties and two catastrophic Falcon 9 failures in 2015 and 2016.

Falcon Heavy’s upper stage deploys its payload fairing, revealing the STP-2 payload stack. (SpaceX)

After spending the whole of 2017 gradually catching up on delayed customer launches, SpaceX successfully conducted Falcon Heavy’s launch debut on February 6th, 2018. Four months later, the Air Force announced that it had completed the SpaceX rocket’s preliminary certification and awarded the company a $130M launch contract for AFSPC-52, a classified military satellite. According to documents describing the mission, the satellite weighs approximately 6350 kg (~14,000 lb) and needs to be placed into a geostationary transfer orbit (GTO) measuring 35,188km X 185km (21,850 mi X 115 mi).

Conveniently, Falcon Heavy’s commercial launch debut saw the massive rocket deliver the communications satellite Arabsat 6A – weighing ~6450 kg (~14,200 lb) – into an extremely high GTO, almost 90,000 km X 330 km (56,000 mi X 205 mi). In simpler terms, Falcon Heavy Flight 2 was an almost perfect demonstration that SpaceX is more than capable of successfully launching AFSPC-52, a milestone that could come as early as H2 2020.

A different angle of Falcon Heavy Flight 2’s liftoff from Teslarati photographer Pauline Acalin. (Pauline Acalin)
USAF photographer James Rainier's remote camera captured this spectacular view of Falcon Heavy Block 5 side boosters B1052 and B1053 returning to SpaceX Landing Zones 1 and 2. (USAF - James Rainier)
Falcon Heavy Block 5 boosters B1052 and B1053 land at Landing Zones 1 and 2 (LZ-1/LZ-2) after their launch debut and Falcon Heavy’s first commercial mission. (USAF – James Rainier)

The STP-2 mission should help to boost the US military’s confidence in Falcon Heavy even further. The mission is comprised of 23 separate satellites from a dozen or so different groups, ranging from a NOAA weather satellite constellation to a NASA-built atomic clock. The purpose of such a varied range of payloads is to have SpaceX’s Falcon upper stage (S2) place three separate sets into three distinctly different Earth orbits, a challenge that will require the rocket to ignite its Merlin Vacuum engine four times and survive in space for more than six hours.

SpaceX has been testing this critical long-coast technology since at least February 2018, when Falcon Heavy’s debut included a six-hour coast of the upper stage to send a Tesla Roadster on an Earth escape trajectory. SpaceX completed that test successfully and said Roadster is now orbiting the sun on a trajectory that regularly reaches beyond the orbit of Mars. SpaceX has continued to test the longevity of its universal Falcon upper stage, including a handful of on-orbit demonstrations after completing customer missions.

SpaceX will reuse the Falcon Heavy side boosters seen above on the USAF’s STP-2 mission.

Aside from opening the door for new areas of competition in military launch procurement, successfully proving the long-coast capabilities of the Falcon upper stage will also mean that SpaceX can offer them commercially. Military launches often require long coasts in order to get spacecraft to their operating orbits as quickly as possible, typically involving an upper stage burning at the top of a transfer orbit to circularize said orbit. This capability can also be of significant value to non-government customers, however, as the faster a satellite can get to its operational orbit, the faster its owner can start using it to generate revenue. Traditionally, most commercial geostationary communications satellites are sent to transfer orbits, raising one end of the orbit (apogee) but leaving the low end (perigee) in low Earth orbit. Satellites then use their own propulsion systems to circularize their orbits before they can begin commercial operations.

It’s safe to assume that SpaceX is interested in commercially offering services like those above to make Falcon Heavy even more competitive with the likes of ULA’s Atlas/Delta/Vulcan rockets and Arianespace’s Ariane 5 and Ariane 6. The US military will almost certainly be the anchor customer, but a reliable upper stage with long-coast capabilities may one day allow Falcon Heavy to routinely launch commercial satellites directly into circular orbits or send flagship NASA spacecraft into deep space. But first, STP-2. According to Taiwan space agency NSPO, involved in the mission through their Formosat-7 constellation (also known as NOAA’s COSMIC-2), Falcon Heavy could launch STP-2 as early as June 22nd.

SpaceX’s dedicated STP-2 webpage can be viewed here.

Advertisement

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX and xAI tapped by Pentagon for autonomous drone contest

The six-month competition was launched in January and is said to carry a $100 million award.

Published

on

Credit: SpaceX/X

SpaceX and its AI subsidiary xAI are reportedly competing in a new Pentagon prize challenge focused on autonomous drone swarming technology, as per a report from Bloomberg News

The six-month competition was launched in January and is said to carry a $100 million award.

Bloomberg reported that SpaceX and xAI are among a select group invited to participate in the Defense Department’s effort to develop advanced drone swarming capabilities. The goal is reportedly to create systems that can translate voice commands into digital instructions and manage fleets of autonomous drones.

Neither SpaceX, xAI, nor the Pentagon’s Defense Innovation Unit has commented on the report, and Reuters said it could not independently verify the details.

Advertisement

The development follows SpaceX’s recent acquisition of xAI, which pushed the valuation of the combined companies to an impressive $1.25 trillion. The reported competition comes as SpaceX prepares for a potential initial public offering later this year.

The Pentagon has been moving to speed up drone deployment and expand domestic manufacturing capacity, while also seeking tools to counter unauthorized drone activity around airports and major public events. Large-scale gatherings scheduled this year, including the FIFA World Cup and America250 celebrations, have heightened focus on aerial security.

The reported challenge aligns with broader Defense Department investments in artificial intelligence. Last year, OpenAI, Google, Anthropic, and xAI secured Pentagon contracts worth up to $200 million each to advance AI capabilities across defense applications.

Elon Musk previously joined AI and robotics researchers in signing a 2015 open letter calling for a ban on offensive autonomous weapons. In recent years, however, Musk has spoken on X about the strengths of drone technologies in combat situations.

Advertisement
Continue Reading

News

Doug DeMuro names Tesla Model S the Most Important Car of the last 30 years

In a recent video, the noted reviewer stated that the choice was “not even a question.”

Published

on

Popular automotive reviewer and YouTuber Doug DeMuro has named the 2012 Tesla Model S as the most important car of the last 30 years.

In a recent video, the noted reviewer stated that the choice was “not even a question,” arguing that the Model S did more to change the trajectory of the auto industry than any other vehicle released since the mid-1990s.

“Unquestionably in my mind, the number one most important car of the last 30 years… it’s not even a question,” DeMuro said. “The 2012 Tesla Model S. There is no doubt that that is the most important car of the last 30 years.”

DeMuro acknowledged that electric vehicle adoption has faced recent headwinds. Still, he maintained that long-term electrification is inevitable.

Advertisement

“If you’re a rational person who’s truthful with yourself, you know that the future is electric… whether it’s 10, 20, 30 years, the future will be electric, and it was the Model S that was the very first car that did that truthfully,” he said.

While earlier EVs like the Nissan Leaf and Chevrolet Volt arrived before the Model S, DeMuro argued that they did not fundamentally shift public perception. The Model S proved that EVs “could be cool, could be fast, could be luxurious, could be for enthusiasts.” It showed that buyers did not have to make major compromises to drive electric.

He also described the Model S as a cultural turning point. Tesla became more than a car company. The brand expanded into Superchargers, home energy products, and a broader tech identity.

DeMuro noted that the Leaf and Volt “made a huge splash and taught us that it was possible.” However, he drew a distinction between being first and bringing a technology into the mainstream.

Advertisement

“It’s rarely about the car that does it first. It’s about the car that brings it into the mainstream,” he said. “The Model S was the car that actually won the game even though the Leaf and Volt scored the first.”

He added that perhaps the Model S’ most surprising achievement was proving that a new American automaker could succeed. For decades, industry observers believed the infrastructure and capital requirements made that nearly impossible.

“For decades, it was generally agreed that there would never be another competitive American car company because the infrastructure and the investment required to start up another American car company as just too challenging… It was just a given basically that you couldn’t do it. And not only did they go it, but they created a cultural icon… That car just truly changed the world,” he said. 

Advertisement
Continue Reading

Elon Musk

Elon Musk doubles down on Tesla Cybercab timeline once again

“Cybercab, which has no pedals or steering wheel, starts production in April,” Musk said.

Published

on

Credit: @JT59052914/X

CEO Elon Musk doubled down once again on the timeline of production for the Tesla Cybercab, marking yet another example of the confidence he has in the company’s ability to meet the aggressive timeline for the vehicle.

It is the third time in the past six months that Musk has explicitly stated Cybercab will enter production in April 2026.

On Monday morning, Musk reiterated that Cybercab will enter its initial manufacturing phase in April, and that it would not have any pedals or a steering wheel, two things that have been speculated as potential elements of the vehicle, if needed.

Musk has been known to be aggressive with timelines, and some products have been teased for years and years before they finally come to fruition.

One of perhaps the biggest complaints about Musk is the fact that Tesla does not normally reach the deadlines that are set: the Roadster, Semi, and Unsupervised Full Self-Driving suite are a few of those that have been given “end of this year” timelines, but have not been fulfilled.

Nevertheless, many are able to look past this as part of the process. New technology takes time to develop, but we’d rather not hear about when, and just the progress itself.

However, the Cybercab is a bit different. Musk has said three times in the past six months that Cybercab will be built in April, and this is something that is sort of out of the ordinary for him.

In December 2025, he said that Tesla was “testing the production system” of the vehicle and that “real production ramp starts in April.

Elon Musk shares incredible detail about Tesla Cybercab efficiency

On January 23, he said that “Cybercab production starts in April.” He did the same on February 16, marking yet another occasion that Musk has his sights set on April for initial production of the vehicle.

Musk has also tempered expectations for the Cybercab’s initial production phase. In January, he noted that Cybercab would be subjected to the S-curve-type production speed:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Cybercab will be a huge part of Tesla’s autonomous ride-sharing plans moving forward.

Continue Reading