Connect with us
Boeing's Starliner and SpaceX's Crew Dragon spacecraft stand vertical at their respective launch pads in December 2019 and January 2020. Crew Dragon has now performed two successful full-up launches to Starliner's lone partial failure. (Richard Angle) Boeing's Starliner and SpaceX's Crew Dragon spacecraft stand vertical at their respective launch pads in December 2019 and January 2020. Crew Dragon has now performed two successful full-up launches to Starliner's lone partial failure. (Richard Angle)

News

Report: SpaceX to launch at least five back-to-back Crew Dragon missions for NASA

Crew Dragon looks set to continue picking up the slack left behind Boeing's Starliner spacecraft. (Richard Angle)

Published

on

Update: Wasting no time at all, NASA has confirmed the Ars Technica report one day later, announcing that rookie astronauts Nicole Mann and Josh Cassada have been reassigned from Boeing Starliner missions to SpaceX’s Crew-5 Crew Dragon launch – currently no earlier than August 2022.

Ars Technica’s Eric Berger reports that NASA has begun the process of moving a number of astronauts assigned to Boeing’s ailing Starliner spacecraft to a SpaceX Crew Dragon mission scheduled no earlier than August 2022.

Per sources close to Berger, NASA has chosen to reassign two rookie astronauts to Crew Dragon as hopes of a crewed Starliner launch – and thus an opportunity for them to gain hands-on spaceflight experience – in the next 6-12 months continue to wither. Barring surprises, the implied change of plans behind those actions means that SpaceX now appears to be scheduled to fly five operational NASA Crew Dragon missions back to back before Boeing’s Starliner flies a single astronaut – let alone its first operational mission with four crew aboard.

In December 2019, nine months after Crew Dragon’s own uncrewed March 2019 debut, Starliner lifted off for the first time on a ULA Atlas V rocket. However, whereas Crew Dragon performed a practically flawless orbital launch, space station rendezvous, docking, departure, reentry, and splashdown on its first try, Starliner’s Orbital Flight Test (OFT) went horribly wrong as soon as it separated from Atlas V.

Advertisement

Due to shoddy prelaunch testing that failed to detect several gaping holes in Starliner’s software, the spacecraft effectively lost control as soon as it was under its own power. Aside from making ground communication and control far harder, Starliner burned through most of its propellant and pushed most of its maneuvering thrusters past their design limits in the first hour or two after launch. Due to the catastrophic software failure and lack of propellant margins, NASA unsurprisingly called off a planned space station rendezvous and docking attempt and Boeing ultimately ordered Starliner to reenter a few days after launch.

Mere hours before reentry, Boeing apparently detected and fixed another major software error at the last second, potentially preventing Starliner’s propulsion and service module from smashing into the capsule’s fragile heat shield and dooming the spacecraft to burn up during reentry. Ultimately, it’s likely that the only reason Boeing didn’t suffer a total loss of vehicle (LOV) during Starliner’s OFT debut spacecraft was dumb luck. Had the initial clock error been worse, Starliner could have failed to reach orbit entirely or burned through all of its propellant, resulting in an uncontrolled reentry. Had there been no clock issue, it’s hard to imagine that Boeing’s software team would have attempted the panicked, impromptu bug hunt that detected and fixed the service module recontact issue.

Now, 22 months after Starliner’s catastrophic OFT, Boeing has been forced to stand down from a second self-funded orbital flight test (OFT-2) due to the last-second discovery of more than a dozen malfunctioning valves on the second spacecraft’s service module. Aside from raising the question of how Boeing and NASA yet again failed to detect a glaring Starliner issue until the day of launch, Starliner’s valve issues appear likely to cause another multi-month delay as Boeing is forced to investigate the problem, find the root cause, and implement a fix on all impacted service modules.

NASA reassigning some of the astronauts scheduled to helm Starliner on its Crewed Flight Test (CFT) and first operational mission to Crew Dragon’s August 2022 Crew-5 launch seemingly implies that the space agency is not confident that Boeing will have completed Starliner OFT-2, passed extensive post-flight reviews, and readied another Starliner for CFT by Q3 2022. Given that NASA took some 14 months to OK Crew Dragon’s Demo-2 crewed flight test after Demo-1’s March 2019 success and a catastrophic April 2019 failure during a ground test of the recovered capsule, it’s not unreasonable to assume that NASA will take about a year after OFT-2 to approve Starliner’s first crewed flight test.

Advertisement

If significant issues arise during OFT-2, which is now unlikely to occur before early 2022, a year-long gap is even more likely. Ultimately, that means that there is now a significant chance that SpaceX’s Crew Dragon spacecraft will complete not just five – but six – back-to-back operational NASA astronaut launches before Starliner is ready for its first operational ferry mission. SpaceX, in other words, is now expected to singlehandedly hold the line and ensure biannual NASA access to and from the International Space Station (ISS) for more than two years despite charging NASA $2 billion less than Boeing (~$5B vs ~$3B) to develop Crew Dragon.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

Advertisement

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Advertisement
Continue Reading