News
Report: SpaceX to launch at least five back-to-back Crew Dragon missions for NASA
Update: Wasting no time at all, NASA has confirmed the Ars Technica report one day later, announcing that rookie astronauts Nicole Mann and Josh Cassada have been reassigned from Boeing Starliner missions to SpaceX’s Crew-5 Crew Dragon launch – currently no earlier than August 2022.
Ars Technica’s Eric Berger reports that NASA has begun the process of moving a number of astronauts assigned to Boeing’s ailing Starliner spacecraft to a SpaceX Crew Dragon mission scheduled no earlier than August 2022.
Per sources close to Berger, NASA has chosen to reassign two rookie astronauts to Crew Dragon as hopes of a crewed Starliner launch – and thus an opportunity for them to gain hands-on spaceflight experience – in the next 6-12 months continue to wither. Barring surprises, the implied change of plans behind those actions means that SpaceX now appears to be scheduled to fly five operational NASA Crew Dragon missions back to back before Boeing’s Starliner flies a single astronaut – let alone its first operational mission with four crew aboard.
In December 2019, nine months after Crew Dragon’s own uncrewed March 2019 debut, Starliner lifted off for the first time on a ULA Atlas V rocket. However, whereas Crew Dragon performed a practically flawless orbital launch, space station rendezvous, docking, departure, reentry, and splashdown on its first try, Starliner’s Orbital Flight Test (OFT) went horribly wrong as soon as it separated from Atlas V.
Due to shoddy prelaunch testing that failed to detect several gaping holes in Starliner’s software, the spacecraft effectively lost control as soon as it was under its own power. Aside from making ground communication and control far harder, Starliner burned through most of its propellant and pushed most of its maneuvering thrusters past their design limits in the first hour or two after launch. Due to the catastrophic software failure and lack of propellant margins, NASA unsurprisingly called off a planned space station rendezvous and docking attempt and Boeing ultimately ordered Starliner to reenter a few days after launch.
Mere hours before reentry, Boeing apparently detected and fixed another major software error at the last second, potentially preventing Starliner’s propulsion and service module from smashing into the capsule’s fragile heat shield and dooming the spacecraft to burn up during reentry. Ultimately, it’s likely that the only reason Boeing didn’t suffer a total loss of vehicle (LOV) during Starliner’s OFT debut spacecraft was dumb luck. Had the initial clock error been worse, Starliner could have failed to reach orbit entirely or burned through all of its propellant, resulting in an uncontrolled reentry. Had there been no clock issue, it’s hard to imagine that Boeing’s software team would have attempted the panicked, impromptu bug hunt that detected and fixed the service module recontact issue.
Now, 22 months after Starliner’s catastrophic OFT, Boeing has been forced to stand down from a second self-funded orbital flight test (OFT-2) due to the last-second discovery of more than a dozen malfunctioning valves on the second spacecraft’s service module. Aside from raising the question of how Boeing and NASA yet again failed to detect a glaring Starliner issue until the day of launch, Starliner’s valve issues appear likely to cause another multi-month delay as Boeing is forced to investigate the problem, find the root cause, and implement a fix on all impacted service modules.
NASA reassigning some of the astronauts scheduled to helm Starliner on its Crewed Flight Test (CFT) and first operational mission to Crew Dragon’s August 2022 Crew-5 launch seemingly implies that the space agency is not confident that Boeing will have completed Starliner OFT-2, passed extensive post-flight reviews, and readied another Starliner for CFT by Q3 2022. Given that NASA took some 14 months to OK Crew Dragon’s Demo-2 crewed flight test after Demo-1’s March 2019 success and a catastrophic April 2019 failure during a ground test of the recovered capsule, it’s not unreasonable to assume that NASA will take about a year after OFT-2 to approve Starliner’s first crewed flight test.
If significant issues arise during OFT-2, which is now unlikely to occur before early 2022, a year-long gap is even more likely. Ultimately, that means that there is now a significant chance that SpaceX’s Crew Dragon spacecraft will complete not just five – but six – back-to-back operational NASA astronaut launches before Starliner is ready for its first operational ferry mission. SpaceX, in other words, is now expected to singlehandedly hold the line and ensure biannual NASA access to and from the International Space Station (ISS) for more than two years despite charging NASA $2 billion less than Boeing (~$5B vs ~$3B) to develop Crew Dragon.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.