Connect with us
According to CEO Elon Musk, SpaceX will share new photos of BFR's Starship upper stage in January and begin booster production as early as next spring. (SpaceX) According to CEO Elon Musk, SpaceX will share new photos of BFR's Starship upper stage in January and begin booster production as early as next spring. (SpaceX)

News

SpaceX confirms initial BFR spaceship flight tests will occur in South Texas

(SpaceX)

Published

on

SpaceX has confirmed that the two large propellant tanks now present at its Boca Chica, Texas facilities will likely to be the last major ground tanks needed to enable the first test flights of the upper stage of its next-gen BFR rocket, known as the Big Falcon Spaceship (BFS).

Expected to begin as soon as late 2019, SpaceX executives have recently reiterated plans for a campaign of hop tests for the first full-scale spaceship prototype, in which the ship will follow in the footsteps of its Falcon 9-based Grasshopper and F9R predecessors.

https://twitter.com/krgv_mike/status/1055748966619537408

In a comment provided to a number of local outlets, SpaceX Communications Specialist Sean Pitt stated this about the recent arrival of a second large propellant storage tank at the company’s prospective South Texas test and launch facilities.

“The ongoing construction of our launch pad in South Texas is proceeding well. SpaceX has now received the final major ground system tank needed to support initial test flights of the Big Falcon Spaceship.” – Sean Pitt, SpaceX

While there may have been some slight uncertainty before, this official statement confirms beyond the shadow of a doubt that SpaceX is actively and rapidly preparing its South Texas property for a future of BFR-related tests, spaceship hops, and perhaps even launches.

Advertisement
SpaceX’s 2018 BFR visualized landing on Mars. Initial Texas hop tests will likely look similar, albeit in Earth gravity and over concrete. (SpaceX)

Same dance, different hops

Unlike Falcon 9’s Grasshopper and F9R reusability development programs, SpaceX’s BFS hop test campaign is likely going to be much more aggressive in order to gather real flight-test data on new technologies ranging from unfamiliar aerodynamic control surfaces (wings & fins vs. grid fins), all-composite propellant tanks (Falcon uses aluminum-lithium), a 9m-diameter vehicle versus Falcon’s 3.7m, a massive tiled heat-shield likely to require new forms of thermal protection, and entirely new regimes of flight (falling like a skydiver rather than Falcon 9’s javelin-style attitude) – to name just a handful.

To fully prove out or at least demonstrate those new technologies, BFS hop testing is likely to be better described as “flight testing”, whereby the spaceship launches vertically but focused primarily on regimes where horizontal velocity is far more important than vertical velocity.

“But by ‘hopper test,’ I mean it’ll go up several miles and then come down. The ship will – the ship is capable of a single stage to orbit if you fully load the tanks. So we’ll do flights of increasing complexity. We really want to test the heat shield material. So I think we’ll fly out, turn around, accelerate back real hard and come in hot to test the heat shield because we want to have a highly reusable heat shield that’s capable of absorbing the heat from interplanetary entry velocities, which is really tricky.” – CEO Elon Musk, October 2017

Focusing on the important things (for fully-reusable rockets)

SpaceX does has significant familiarity with the general style of testing expected to be used to prove out its next-gen spaceship, a major department from anything the company has yet built or flown. Updated in September 2018 by CEO Elon Musk, the craft’s most recent design iteration is reportedly quite close to being finalized. That near-final design prominently features a trio of new aft fins (two able to actuate as control surfaces), two forward canards, and an updated layout of seven Raptor engines.

Critically, SpaceX has decided to commonize BFR’s main propulsion, choosing to skip the performance benefits of a vacuum-optimized Raptor variant for the simplicity and expediency of exclusively using sea level Raptors on both the booster and spaceship. This decision is ultimately strategic and well-placed: rather than concerning early-stage development with the inclusion of a second major branch of onboard propulsion, the company’s engineers and technicians can place their focus almost entirely on a one-size-fits-all version of BFR with plenty of room for upgrades down the road.

Advertisement

 

With a rocket as large as BFR and a sea level engine already as efficient as Raptor, the performance downgrade wrought by the initial removal of Raptor Vacuum (RVac) is scarcely more than a theoretical diversion. The specific performance numbers remain to be seen but will likely be greater than 100 metric tons (~220,000 lbs) to low Earth orbit (LEO). Past a certain point, however, the actual performance to LEO and beyond is almost irrelevant, at least from a perspective of individual launches. The paradigm SpaceX is clearly already interrogating is one where the cost of individual launches is so low relative to today’s expendable launch pricing ($5,000-20,000/kg to LEO) that it will almost be anachronistic to design or work with a single-launch-limit in mind, a limit that is just shy of a natural law in the spaceflight industries of today.

Because SpaceX has already demonstrated expertise in vertically launching, landing, and generally controlling large rockets, the main challenges faced with BFR are more operational than purely technical. To be clear, the technical challenges are still immense, but successfully solving those challenges by no means guarantees that the aircraft-like operational efficiency needed for BFR to succeed can or will be fully realized.

 

In 2016, Musk pegged SpaceX’s cost goals for a BFR-style fully-reusable rocket at less than $1M per launch for booster and spaceship maintenance alone, or $3.3M per launch with amortization (paying for the debt/investment incurred to fund BFR’s development) and propellant estimates included. To realize those ambitious costs, SpaceX will effectively have to beat the expendable but similarly-sized Saturn V’s per-launch costs (~$700M) by a factor of 100 to 200 – more than two orders of magnitude – and SpaceX’s own Falcon 9 and Heavy launch costs (~$55M to $130M) by 20-50X.

Advertisement

To even approach those targets, SpaceX will need to learn how to launch Falcon and BFR near-autonomously with near-total and refurbishment-free reusability, while also developing and demonstrating orbital refueling capabilities that do not currently exist and rapidly maturing large-scale composite tankage and structures. None of those things require Raptor Vacuum.


For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk confirms Tesla AI6 chip is Project Dojo’s successor

Tesla’s AI5 and AI6 chips are expected to be rolled out to the company’s consumer products.

Published

on

tesla-supercomputer-pre-dojo
Credit: Tim Zaman/Twitter

Earlier this week, reports emerged stating that Tesla has stepped back from its Project Dojo initiative. While the reports were initially framed as a negative development for the electric vehicle maker’s autonomous driving efforts, CEO Elon Musk later noted on X that Tesla was indeed halting its Dojo initiative.

Elon Musk’s Confirmation

As per Musk, Tesla was shuttering Project Dojo because it does not make sense for the company to divide its resources and scale two different AI chip designs. Dojo, after all, is designed to train the company’s autonomous driving program, and thus, it would not be rolled out to Tesla’s consumer products.

In a series of posts on X, Musk stated that it would make sense to just use Tesla’s AI5/AI6 to train its FSD and Autopilot systems. “In a supercomputer cluster, it would make sense to put many AI5/AI6 chips on a board, whether for inference or training, simply to reduce network cabling complexity & cost by a few orders of magnitude,” Musk said.

Tesla’s AI5 and AI6 chips are expected to be rolled out to the company’s consumer products, from Optimus to the Cybercab to the next-generation Roadster.

AI6 is Dojo’s Successor

What was particularly interesting about Musk’s comment was his mention of using AI5/AI6 chips for training. As per Musk, this strategy could be seen as “Dojo 3” in a way, since the performance of Tesla’s AI5 and AI6 chips is already notable. Musk’s comment about using AI6 chips for training caught the eye of many, including Apple and Rivian alumnus Phil Beisel, who noted that “AI6 is now Dojo.”

Advertisement

“Dojo is Tesla’s AI training supercomputer, built around a custom chip known as the D1. The D1 and AI5/AI6 share many core design elements, particularly the math operations used in neural networks (e.g., matrix multiplication) and highly parallel processing.

“Dojo had a unique feature: chips arranged in a 5×5 grid using a system-on-wafer design, with etched interconnects enabling high-speed data transfer. In a sense, Dojo will live on as the generalized AI6. Going forward, all efforts will focus on AI6,” the tech veteran wrote in a post on X.

Elon Musk confirmed the Apple alumnus’ musings, with the CEO responding with a “bullseye” emoji. Musk is evidently excited for Tesla’s AI6 chip, which is expected to produced by Samsung’s upcoming Texas fabrication facility. In a post on X, Musk stated that he would personally be walking Samsung’s line to accelerate the output of Tesla’s AI6 computers.

Continue Reading

Cybertruck

Tesla’s new upgrade makes the Cybertruck extra-terrestrial

The upgrade was announced by the electric vehicle maker on social media platform X.

Published

on

Credit: Tesla

It took a while, but the Tesla Cybertruck’s rock sliders and battery armor upgrades have finally arrived. The upgrade was announced by the electric vehicle maker on social media platform X, to much appreciation from Cybertruck owners.

Tesla Releases Cybertruck Armor Package

As could be seen in Tesla’s official Shop, the Cybertruck Terrestrial Armor Package is available only for Foundation Series units for now, though non-Foundation Series vehicles should have access to the upgrade around September 2025. Price-wise, the armor package is quite reasonable at $3,500.

For that price, Cybertruck owners would be able to acquire enhanced rock sliders and an underbody battery shield that should allow the all-electric pickup truck to go through harsh terrain without any issues. Each purchase of the Terrestrial Armor Package includes 1 Underbody shield, 1 Left side structural rocker, and 1 Right side structural rocker.

Most importantly, the Armor Package’s price includes shipment to the customer’s preferred Tesla Service Center and installation.

Extra-Terrestrial

Tesla describes its Cybertruck Armor Package as follows: “Get extra-terrestrial. The Cybertruck Terrestrial Armor Package includes enhanced rock sliders and an underbody battery shield to provide greater protection from rocks and debris when off-roading on tough terrain. The rock sliders are constructed from coated steel and the underbody battery shield is constructed from aluminum for greater protection against scraping.”

Advertisement

Initial impressions from a Cybertruck owner who was fortunate enough to test the Armor Package in real-world off-road conditions have been positive. The item’s pricing also seems to be quite appreciated by Cybertruck owners in forums such as the Cybertruck Owners Club, with some members stating that they would be acquiring the package for their own all-electric pickup trucks.

Continue Reading

News

Tesla Model Y L reportedly entered mass production in Giga Shanghai

The vehicle is expected to be a larger version of the best-selling Model Y crossover.

Published

on

Credit: Tesla Asia/X

Reports from industry watchers in China have suggested that the Tesla Model Y L has started mass production at Gigafactory Shanghai. The vehicle is expected to be a larger version of the best-selling Model Y crossover, offering three rows and six seats thanks to a longer wheelbase.

Tesla Model Y L Production Rumors

Reports about the new Model Y variant’s alleged milestone were initially shared on Weibo, with some industry watchers stating that the vehicle has already started mass production. Tesla China is reportedly surveying which of its domestic stores would have the first display units of the six-seat Model Y. 

The Model Y L’s steady march towards production was evident this past week, with recent reports indicating that the vehicle’s key specs have already been listed in the China Ministry of Industry and Information Technology’s (MIIT) latest batch of new energy vehicle models that are eligible for vehicle purchase tax exemptions.

As per the MIIT’s list, the Model Y L will be a dual motor vehicle that is equipped with an 82.0-kWh lithium-ion battery from LG Energy Solution. The vehicle will feature six seats with two captain seats on the second row, as well as a CLTC range of 751 km. 

Tesla Model Y L Potential

The potential of the Model Y L is vast, considering that it is produced in the existing Model Y lines of Tesla’s factories. This should slash new vehicle tooling costs and potential ramp-up issues. Three-row SUVs also command a pretty notable market that has mostly only been accessed by the more expensive Model X. With the Model Y L’s lower price, Tesla could become more competitive in the three-row SUV segment.

Advertisement

As noted by longtime Tesla owner and investor @_SFTahoe, the Model Y L could also become a more premium option for the company’s Robotaxi business, thanks to its second row captain seats and spacious interior. The expansion of Model Y L Robotaxis should also be impressive considering Tesla’s mastery of mass manufacturing techniques. 

Continue Reading

Trending