SpaceX
SpaceX to submit Moon lander proposal for latest NASA spaceflight competition
SpaceX reportedly plans to submit its own human-rated Moon lander design for NASA’s latest major request for proposal (RFP), part of the agency’s rough plan to return humans to the Moon no earlier than 2028.
Meant to begin delivering NASA astronauts to the surface of the Moon as early as 2028, the agency hopes to base those lander operations on a thus far unbuilt space station orbiting the Moon with the support of its SLS rocket and Orion spacecraft.
This is actually a pretty big deal. https://t.co/P6LXAMXVJI
— Eric Berger (@SciGuySpace) February 11, 2019
SpaceX will submit a lunar lander design.
— Eric Berger (@SciGuySpace) February 11, 2019
Meant to build directly off of SLS/Orion, a NASA-designed rocket and spacecraft beset with at least three years of delays and billions of dollars in cost overruns, it’s unclear where SpaceX might fit into NASA’s latest modernized attempt at an Apollo Program 2.0. Alongside the 2017 cancellation of Crew Dragon’s propulsive landing program due in part to the likely cost of the certification burden NASA would have placed on the technology before allowing it to land astronauts, SpaceX also canceled Red Dragon (and thus Grey Dragon), a proposal to use a minimally modified version of Crew Dragon as an ad-hoc Mars lander and R&D testbed.
Aside from the likely cost of certifying propulsive Crew Dragon to NASA specifications, CEO Elon Musk also explained the program’s cancellation as a consequence of SpaceX’s far greater interest in what he described as “vastly bigger ship[s]” in July 2017. This translated into a presentation at IAC 2017 a few months later, where Musk revealed SpaceX’s updated design for a giant, fully-reusable launch vehicle meant to enable sustainable Mars colonization, known then as BFR. BFR has since been reconceptualized at least two more times, settling (at present) on a radical new approach said to rely heavily on stainless steel as a replacement for advanced carbon composites.
Initially making one 200 metric ton thrust engine common across ship & booster to reach the moon as fast as possible. Next versions will split to vacuum-optimized (380+ sec Isp) & sea-level thrust optimized (~250 ton).
— Elon Musk (@elonmusk) February 1, 2019
In the second half of 2018 and the first few months of 2019, the SpaceX CEO’s BFR (now Starship/Super Heavy) narrative has noticeably diverged from a largely exclusive focus on Mars to include a new interest (be it genuine or out of convenience) in the Moon. Most notably, Musk stated in January and February 2019 that SpaceX’s single-minded goal for BFR was now “to reach the moon as fast as possible”. In response to a question about SpaceX’s intentions for the first few orbital BFR (Starship) launches, Musk also replied, “Moon first, Mars as soon as the planets align”.
This is likely explicitly connected to Japanese billionaire Yusaku Maezawa’s decision to purchase the first operational Starship (BFR) launch in support of his philanthropic #DearMoon project, meant to send 8-10 artists from across Earth on the first commercial voyage around the Moon as early as 2023. While no specific value was given, the implication of CEO Elon Musk’s emotional response when discussing the financial support pegged the number in the hundreds of millions of dollars, likely on the order of $250M to $500M. However, any astute bureaucrat or aerospace executive would also be (and have been) distinctly aware of a new political undercurrent pushing for the US and NASA to return humans to the Moon, circulating for the last few years before breaking through to the surface in the last six or so months.
- SpaceX’s updated BFR spaceship seen cresting over the Moon’s limb. (SpaceX)
- SpaceX’s 2017 BFS (now Starship) delivers cargo to a large lunar base. (SpaceX)
Orion/SLS versus Starship/Super Heavy?
Per Musk’s frequent and insistent comments on just how hard he expects it to be for SpaceX to fully fund the development of BFR, it would come as no surprise to learn that SpaceX had set its eyes on potential sources of major BFR development funds. Where exactly NASA will find the multibillion-dollar sum likely required to develop even a commercial human-rated Moon lander is entirely unclear, but alas. Although NASA’s new Moon mission seems like an apt fit for SpaceX, funding aside, the problem remains that SpaceX’s next-generation Starship/Super Heavy (formerly BFR) launch vehicle poses a direct, existential threat to NASA’s SLS rocket and Orion spacecraft, an almost entirely expendable system likely to cost no less than $1B per launch and unlikely to launch for the first time until 2021.
NASA’s human return to the Moon is meant to directly complement SLS/Orion thanks to the intention of using a theoretical Moon-based space station (known as Gateway) in a bizarre lunar orbit (known as a “Near Rectilinear Halo Orbit” or NRHO) as the base of lunar-landing operations. The decision to place said Gateway in a lunar halo orbit derives almost exclusively derives (PDF) from a separate decision to design NASA’s future exploration plans around SLS and Orion, particularly Orion in the context of the Moon. Put simply, Orion is relatively mass-inefficient and has a fairly limited amount of delta V (shorthand for the capacity to change one’s velocity), preventing far more useful orbits (i.e. actual lunar orbits). The fragile web of Gateway, SLS, Orion, and any potential crewed Moon landers is intentionally designed to be interdependent, meaning that each piece on its own makes little objective sense and has no obvious functional benefit relative to a bevy of alternatives.
- SLS Block 1. (NASA)
- NASA’s proposed Moon-based space station, known as Gateway. (NASA)
- BFR’s spaceship and booster (now Starship and Super Heavy) separate in a mid-2018 render of the vehicle. (SpaceX)
- A BFS attempts a Mars landing in this official updated render. (SpaceX)
As designed, SpaceX’s Starship/Super Heavy combo would be a nearly redundant and radically simpler solution to the mishmash of Gateway, SLS, Orion, and others. A return to using propulsive Crew Dragon landings as a method of significant payload delivery to the lunar surface is immensely unlikely. The value of an entirely new SpaceX-built craft is equally unclear, given Musk and SpaceX’s general stance on putting development funds towards things that bring the company closer to achieving its ultimate goal of sustainable interplanetary colonization. Regardless, it will undoubtedly be exciting to see what happens and whether SpaceX actually chooses to submit a proposal for one or all aspects of NASA’s baselined lunar lander.
Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!
Elon Musk
SpaceX’s next project will produce Starships at a level that sounds impossible
1,000 rockets per year is an insane number, especially considering Starship’s sheer size.
Elon Musk has revealed bold plans for SpaceX’s newest Starbase facility in Texas, predicting it will become a birthplace for “so many spaceships.” The upcoming “Gigabay,” a massive $250 million production hub in Starbase, Texas, is designed to manufacture up to 1,000 Starship rockets per year.
That’s an insane number of rockets for a single facility, especially considering Starship’s sheer size.
One of the world’s largest industrial structures
SpaceX’s Gigabay is expected to stand roughly 380 feet tall and enclose 46.5 million cubic feet of interior space, making it one of the largest industrial structures to date. The facility will feature 24 dedicated work cells for assembling and refurbishing Starship and Super Heavy vehicles, complete with heavy-duty cranes capable of lifting up to 400 U.S. tons, as noted in a Times of India report.
Construction crews have already placed four tower cranes on-site, with completion targeted for December 2026. Once operational, the Gigabay is expected to boost SpaceX’s launch cadence dramatically, as it would be able to build up to 1,000 reusable Starships per year, as noted in a report from the Dallas Express. Musk stated that the Gigabay will be “one of the biggest structures in the world” and hinted that it represents a major leap in Starbase’s evolution from test site to full-scale production hub.
A key step toward Mars and beyond
Starship is SpaceX’s heavy-lift rocket system, and it remains a key part of Elon Musk’s vision of a multiplanetary future. The vehicle can carry 100–150 tonnes to low Earth orbit and up to 250 tonnes in expendable mode. With several successful flights to date, including a perfect 11th test flight, the Starship program continues to refine its reusable launch system ahead of crewed lunar missions under NASA’s Artemis initiative.
Starship is unlike any other spacecraft that has been produced in the past. As per Elon Musk, Starship is a “planet-colonizer” class rocket, as the magnitude of such a task “makes other space transport task trivial.” Considering Starship’s capabilities, it could indeed become the spacecraft that makes a Moon or Mars base feasible.
Cybertruck
Tesla Cybertruck fleet takes over at SpaceX’s Starbase
Interestingly, the Cybertruck uses the same exterior, a stainless steel alloy, as SpaceX rockets. This synergy between the two companies and their very different products shows a very unified mentality between Musk companies.
Tesla Cybertrucks have taken over at SpaceX’s Starbase facility in Texas, as hundreds of the all-electric pickup trucks were spotted late last week rounding out a massive fleet of vehicles.
The Cybertruck fleet is geared toward replacing gas vehicles that are used at Starbase for everyday operations. The only surprise about this is that it was not done sooner:
Was just visiting. pic.twitter.com/5Q9wPPaeuH
— Derek Li (@derek1ee) October 31, 2025
Deliveries have been going on for a few weeks, as Cybertrucks have made their way across the state of Texas from Austin to Starbase so they could be included in SpaceX’s fleet of vehicles at the facility.
Interestingly, the Cybertruck uses the same exterior, a stainless steel alloy, as SpaceX rockets. This synergy between the two companies and their very different products shows a very unified mentality between Musk companies.
However, there are some other perspectives to consider as SpaceX is utilizing such a massive fleet of Cybertrucks. Some media outlets (unsurprisingly) are seeing this as a move of weakness by both Tesla and SpaceX, as the aerospace company is, in a sense, “bailing out” lagging sales for the all-electric pickup.
It’s no secret that Tesla has struggled with the Cybertruck this year, and deliveries have been underwhelming in the sense that the company was anticipating between 1 million and 2 million orders for the vehicle before it was widely produced.
A lot of things changed with the Cybertruck between its 2019 unveiling and 2023 initial deliveries, most notably, price.
The price of the Cybertruck swelled significantly and priced out many of those who had pre-ordered it. Some have weighed the option of whether this purchase was a way to get rid of sitting inventory.
However, it seems more logical to consider the fact that SpaceX was likely always going to transition to Teslas for its fleet, especially at Starship, at some point.
It doesn’t seem out of the question that one Musk company would utilize another Musk company’s products, especially considering the Cybertruck has been teased as the vehicle that would be present on Mars.
News
SpaceX successfully launches 100th Starlink mission of 2025
With 100 Starlink missions completed for 2025, space enthusiasts have noted that SpaceX has successfully launched 2,554 Starlink satellites so far this year.
SpaceX achieved its 100th Starlink mission of the year on Friday, October 31, marking another milestone for 2025.
A Falcon 9 rocket carrying 28 Starlink broadband satellites successfully lifted off from Vandenberg Space Force Base in California at 4:41 p.m. ET, carrying another 28 Starlink satellites to Low Earth Orbit (LEO).
Falcon 9 booster’s 29th flight
Roughly 8.5 minutes after liftoff, the Falcon 9’s first stage touched down on the drone ship Of Course I Still Love You in the Pacific Ocean. This marked the booster’s 29th flight, which is approaching SpaceX’s reuse record of 31 missions.
This latest mission adds to SpaceX’s impressive 138 Falcon 9 launches in 2025, 99 of which were dedicated to Starlink, according to Space.com. The company’s focus on reusing boosters has enabled this breakneck pace, with multiple launches each week supporting both Starlink’s expansion and external customers.
Starlink’s network continues massive global expansion
Starlink remains the largest active satellite constellation in history, with more than 10,000 satellites launched, nearly 8,800 of which are currently active. SpaceX recently achieved Starlink’s 10,000-satellite milestone. With 100 Starlink missions completed for 2025, space enthusiasts have noted that SpaceX has successfully launched 2,554 Starlink satellites so far this year.
Starlink, which provides high-speed, low-latency internet connectivity even to the world’s most remote areas, has been proven to be life-changing technology for people across the globe. The service is currently operational in about 150 countries, and it currently has over 5 million subscribers worldwide. From this number, 2.7 million joined over the past year.
-
News1 week agoTesla shares rare peek at Semi factory’s interior
-
Elon Musk1 week agoTesla says texting and driving capability is coming ‘in a month or two’
-
News1 week agoTesla makes online ordering even easier
-
News1 week agoTesla Model Y Performance set for new market entrance in Q1
-
News1 week agoTesla Cybercab production starts Q2 2026, Elon Musk confirms
-
News6 days agoTesla is launching a crazy new Rental program with cheap daily rates
-
News1 week agoTesla China expecting full FSD approval in Q1 2026: Elon Musk
-
News1 week agoTesla Model Y Performance is rapidly moving toward customer deliveries







