News
SpaceX’s next Starhopper flight needs more analysis for FAA go-ahead, says Elon Musk
According to SpaceX CEO Elon Musk, the company’s next major Starhopper flight test is still awaiting FAA approval due to a need for more hazard analysis, presumably required because Starhopper will be traveling much higher than before.
On August 9th, SpaceX completed a routine wet dress rehearsal (WDR) with Starhopper, loading the vehicle with propellant and fluids and replicating a launch countdown up to the point of Raptor ignition. Starhopper remains untethered in a sign that SpaceX doesn’t have plans for a static fire test before the low-fidelity rocket prototype’s next flight milestone. Originally scheduled for August 12th, that milestone – a 200m (650 ft) hop test – has been indefinitely delayed as SpaceX awaits an updated permit from the Federal Aviation Administration (FAA).
The oddity of the apparent difficulty SpaceX is having with the FAA’s experimental permit process is deepened by the fact that Starhopper is already permitted by the FAA and demonstrated its first successful flight just a few weeks ago, on July 25th. On top of the fact that the local Boca Chica and Brownsville, Texas airspace tends to be extremely quiet, it’s unclear what exactly is holding up SpaceX, the FAA, or both in what should otherwise be a relatively streamlined process.

A few weeks ago, after one false start on July 24th, Starhopper performed its first untethered flight ever on July 25th, successfully demonstrating its integrated steel propellant tanks, avionics, software, and Raptor propulsion over the course of 20 or so seconds of flight. Starhopper’s inaugural flight was delayed at least several weeks by a major bug with SpaceX’s next-gen Raptor engine, described by Elon Musk as a problem with a certain frequency of vibration (i.e. mechanical resonance).
According to Musk, said resonance failure mode was effectively solved with unspecified modifications made to the sixth Raptor engine produce (Raptor SN06). That engine became the first to successfully pass SpaceX’s regime of pre-hop static fires in McGregor, Texas around July 10th and was shipped south to Boca Chica and installed on Starhopper scarcely 24 hours later.
Assuming those vibration issues have been completely quashed, Musk has also stated that SpaceX is aiming to produce as many as two Raptor engines per day by the end of 2019. It’s believed that all engines preceding SN06 (SN01-05) were either damaged or destroyed during testing, be that a result of intentional testing-to-destruction or anomalous behavior during certain test regimes. It should be noted that full-scale Raptor is still undoubtedly in development and hardware failure during developmental testing is more predictable and valuable than it might seem. As long as the program can handle it, ‘hardware-rich’ development (i.e. moving fast and breaking things) can be equally – if not more – valuable than an extremely cautious get-it-right-the-first-time approach.
Regardless, once SpaceX’s propulsion engineering team is confident that the more major bugs that plagued early Raptor engines have been alleviated, they will likely give the go-ahead for the engine manufacturing team to begin ramping production rates. Musk believes that SpaceX could be ready for the first test flights of either or both of the company’s orbital Mk1 and Mk1 Starship prototypes as early as mid-September, milestones that will eventually require three sea-level Raptor engines and up to three vacuum Raptor engines per rocket.
Meanwhile, although SpaceX has yet to begin assembling the first Super Heavy booster(s), said boosters will require dozens of Raptor engines each for their first flights. Musk says that SpaceX will start out with something like 20 Raptor engines per booster to minimize losses and disruption in the event of a catastrophic failure, eventually expanding to as many as 35 engines per booster as confidence grows.
For now, Starhopper’s next flight test was scheduled from August 16th through the 18th but has since been tentatively rescheduled to Aug. 19-21. Starhopper will remain grounded until the FAA is satisfied with SpaceX’s updated hazard analyses for the rocket’s 200m flight test.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla rolls out new Supercharging safety feature in the U.S.
Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.
It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.
The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.
With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:
“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”
The feature was first spotted by Not a Tesla App.
This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.
For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.
Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.
This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.
News
LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report
Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.
A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.
Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.
Humanoid robot battery deals
LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.
China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.
LF Energy Solution vs rivals
According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.
LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.
News
Tesla receives approval for FSD Supervised tests in Sweden
Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden in a press release.
Tesla has received regulatory approval to begin tests of its Full Self-Driving Supervised system on public roads in Sweden, a notable step in the company’s efforts to secure FSD approval for the wider European market.
FSD Supervised testing in Sweden
Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden following cooperation with national authorities and local municipalities. The approval covers the Swedish Transport Administration’s entire road network, as well as urban and highways in the Municipality of Nacka.
Tesla shared some insights into its recent FSD approvals in a press release. “The approval shows that cooperation between authorities, municipalities and businesses enables technological leaps and Nacka Municipality is the first to become part of the transport system of the future. The fact that the driving of the future is also being tested on Swedish roads is an important step in the development towards autonomy in real everyday traffic,” the company noted.
With approval secured for FSD tests, Tesla can now evaluate the system’s performance in diverse environments, including dense urban areas and high-speed roadways across Sweden, as noted in a report from Allt Om Elbil. Tesla highlighted that the continued development of advanced driver assistance systems is expected to pave the way for improved traffic safety, increased accessibility, and lower emissions, particularly in populated city centers.
Tesla FSD Supervised Europe rollout
FSD Supervised is already available to drivers in several global markets, including Australia, Canada, China, Mexico, New Zealand, and the United States. The system is capable of handling city and highway driving tasks such as steering, acceleration, braking, and lane changes, though it still requires drivers to supervise the vehicle’s operations.
Tesla has stated that FSD Supervised has accumulated extensive driving data from its existing markets. In Europe, however, deployment remains subject to regulatory approval, with Tesla currently awaiting clearance from relevant authorities.
The company reiterated that it expects to start rolling out FSD Supervised to European customers in early 2026, pending approvals. It would then be unsurprising if the company secures approvals for FSD tests in other European territories in the coming months.