News
SpaceX has no plans to reuse Crew Dragon spaceships on NASA astronaut launches
According to program manager Kathy Lueders, SpaceX has chosen against reusing its upgraded Crew Dragon spaceships on NASA Commerical Crew Program (CCP) launches, even though NASA itself explicitly provided both CCP providers (Boeing and SpaceX) the option to propose reflights of crew capsules.
In fact, Boeing did just that with their CST-100 Starliner spacecraft, proposing to land Starliners on land (using airbags) and reuse the capsules repeatedly, up to 10 times each. While there is next to no official information on the matter, the question of what SpaceX is planning to do with its flight-proven Crew Dragon spacecraft is well worth puzzling over.
The Crew Dragon capsule for the SpaceX DM-1 mission will be launch ready by the end of September. pic.twitter.com/xsGw9fWkUG
— Michael Baylor (@MichaelBaylor_) August 27, 2018
The future of flight-proven Dragon 2s
Speaking at the most recent (August 27) NASA Advisory Council meeting, Lueders specifically stated that SpaceX had proposed “a new vehicle every time for [NASA]”, although NASA specifically provided the option for either new or reflown hardware, similar to Commercial Cargo where SpaceX already routinely reflies both Falcon 9s and Cargo Dragons on official NASA resupply missions.
The fact that SpaceX already routinely reuses Cargo Dragons – and even does so atop flight-proven Falcon 9 rocket boosters – adds additional intrigue to this seemingly odd decision. However, in the context of other near-term plans for other Dragon-related activities, SpaceX’s choice to not (at least in the near-term) refly Crew Dragon capsules for crewed NASA launches makes more than a little sense.
- DM-1 seen conducting acoustic testing in Ohio. (SpaceX)
- Falcon 9 B1051, DM-1’s rocket of choice, seen during construction in SpaceX’s Hawthorne factory. (SpaceX)
- (SpaceX)
- (SpaceX)
The single most obvious explanation can be found in SpaceX’s next Commercial Resupply Services contract (CRS-2), a similar follow-up to the CRS-1 contract SpaceX is currently launching Cargo Dragons under. Although SpaceX offered its Dragon 1 (already flying) as an option, NASA sided with Dragon 2 thanks to a number of unique and valuable capabilities offered by the upgraded craft. While no official detail has been released by NASA on the gritty specifics of those CRS-2 contracts, an April 2018 report from the Office of the Inspector General (OIG) offers a bit more insight into SpaceX’s plans.
Although the OIG report in question never specifically states it, some of the language used to describe Dragon 2’s cargo configuration does seem to imply that Cargo Dragon 2s will predominately (if not exclusively) be derived as slightly-modified Crew Dragon capsules, seemingly indicating that SpaceX’s CRS-2 missions may only ever launch flight-proven Crew Dragon capsules. Depending on the extent of the disassembly required to remove the components described below, all other “modifications” are essentially one-and-done after the software and additional designs are completed. As such, it should be relatively straightforward to modify the vehicles between Crew and Cargo configurations.
- An overview of the expected modifications needed to turn a Crew Dragon into a Cargo Dragon 2. (NASA OIG)
This strategy would make a lot of sense: by using its Commercial Crew contract as a means to fund the construction of brand new Crew Dragon capsules and Falcon 9 rockets and then using those once flight-proven rockets and spacecraft for other NASA cargo launches, general commercial missions, and maybe even low Earth orbit tourism, SpaceX can likely extract as much value and utility as possible from that hardware.
Despite the fact that NASA in this situation would effectively be carrying a significant portion of SpaceX’s non-BFR production-related capital expenditure, the company’s CRS-2 and Commercial Crew contracts place its cargo and crew launch costs far below those of competitors Boeing, Orbital ATK (now Northrop Grumman Innovation Systems), and Sierra Nevada. Overall, SpaceX’s launch costs to NASA range anywhere from 40-75% less than its three competitors’ best offerings, essentially invalidating any nitpicking over slight cost increases from CRS-1 to CRS-2.
Even if SpaceX never ends up reusing Crew Dragons on crewed NASA launches, NASA is still likely to benefit from lower costs derived by the partial modification and reuse of those same capsules and Falcon 9 boosters on CRS-2 cargo resupply missions.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
Elon Musk
SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films
A Starship that launches from the Florida site could touch down on the same site years later.
The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.
According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies.
Booster in Minutes, Ship in (possibly) years
The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.
“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.
This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.
Noise and emissions flagged but deemed manageable
While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.
Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.
SpaceX Starship Environmental Impact Statement by Simon Alvarez
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.
News
Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.
Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.
FSD V14.2.1 first impressions
Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”
Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.
Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall.
Sign recognition and freeway prowess
Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.
FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.
FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”






