News
SpaceX sets stage for Starship booster’s first 33-engine static fire
SpaceX has set the stage for a record-breaking Starship booster static fire after the rocket completed a complex fueling test and launch rehearsal earlier this week.
On January 25th, a tower the size of a skyscraper activated a pair of giant mechanical arms to disassemble the largest rocket ever built. The arms carefully grabbed Starship using hard points under its flaps and lifted the 50-meter-tall second stage and spacecraft off of Super Heavy Booster 7. Nicknamed Mechazilla, the robot lowered the hundred-ton (~220,000+ lbs) vehicle hundreds of feet onto a waiting stand and eventually let go. On January 26th, SpaceX transported Ship 24 back to its Starbase, Texas factory for finishing touches.
Booster 7 remained installed on Starbase’s donut-shaped orbital launch mount, which uses clamps and umbilicals to hold Starship in place and power, fuel, and pressurize Super Heavy. In theory, the next time Booster 7 leaves that launch mount, it will do so under its own power. But first, SpaceX must ensure that that unprecedented power can be controlled (and survived).
The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air— Wes (@wmorrill3) April 16, 2024
This, unfortunately, is far from the first iteration of this story. SpaceX has been seemingly close to the milestone at many points over the last year and a half. In September 2021, for example, CEO Elon Musk reported that Super Heavy Booster 4 would attempt the first static fire on Starbase’s orbital launch mount later that month. Eleven months later, Super Heavy Booster 7 gave the OLM its inaugural static fire test – albeit with just one of its 33 engines.
In the months following that static fire, Booster 7 completed another single-engine test, a two-engine test, a seven-engine test, a fourteen-engine test, and a long-duration eleven-engine test. All of that slow and steady testing has been fairly successful and caused no major damage to the rocket or pad. But five months after it began, SpaceX has never ignited more than 14 – 42% – of Super Heavy’s 33 Raptor engines at once. That must change before SpaceX can gain enough confidence in Starship for (and convince the FAA to license) an orbital launch attempt.
During Super Heavy B7’s 14-engine static fire, the booster could have produced up to 3220 tons (7.1 million pounds) of thrust. When it ignites all 33 available engines for the first time, its maximum thrust could leap to 7590 tons (16.7 million pounds), beating the next most powerful rocket in history – the Soviet N1 – by nearly 60%. In other words, SpaceX will be attempting something unprecedented in rocketry. Success is far from guaranteed and the worst possible failure mode could almost entirely destroy Starship’s only finished orbital launch site, explaining SpaceX’s unusual caution.
On January 23rd, Ship 24 and Booster 7 completed Starship’s first full wet dress rehearsal (a fueling and launch rehearsal test) on the first try – an extremely impressive achievement for any rocket, let alone the largest in history. With that combined test out of the way, the only unprecedented test standing between Starship and its first orbital launch attempt is a 33-engine Super Heavy static fire.
To reduce risk, Ship 24 was removed from Booster 7. Back at the factory, SpaceX needs to close a few gaps left in its heat shield, and will likely also conduct careful inspections to ensure that the Starship is ready for flight. Unburdened of Ship 24, Booster 7 may finally be on the cusp of the most challenging ground test in Starship and SpaceX history. SpaceX has scheduled 12-hour road closures that could be used for that purpose as early as January 30th, 31st, and February 1st.
Those road closures could be used for Ship 25 static fire testing instead of or in addition to Booster 7. The Super Heavy is also missing an important hydraulic power unit (HPU) that was removed before the wet dress rehearsal. It’s unclear if static fire testing can be conducted without that HPU (one of two), why it was removed, or how long replacing it will take, adding more uncertainty. Nonetheless, it still appears that SpaceX is no more than a few weeks away from Starship’s first 33-engine static fire attempt.
Elon Musk
Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Elon and Ashok’s firsthand Robotaxi insights
Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.”
Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.
Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”
Towards Unsupervised operations
During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.
Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.