News
SpaceX sets stage for Starship booster’s first 33-engine static fire
SpaceX has set the stage for a record-breaking Starship booster static fire after the rocket completed a complex fueling test and launch rehearsal earlier this week.
On January 25th, a tower the size of a skyscraper activated a pair of giant mechanical arms to disassemble the largest rocket ever built. The arms carefully grabbed Starship using hard points under its flaps and lifted the 50-meter-tall second stage and spacecraft off of Super Heavy Booster 7. Nicknamed Mechazilla, the robot lowered the hundred-ton (~220,000+ lbs) vehicle hundreds of feet onto a waiting stand and eventually let go. On January 26th, SpaceX transported Ship 24 back to its Starbase, Texas factory for finishing touches.
Booster 7 remained installed on Starbase’s donut-shaped orbital launch mount, which uses clamps and umbilicals to hold Starship in place and power, fuel, and pressurize Super Heavy. In theory, the next time Booster 7 leaves that launch mount, it will do so under its own power. But first, SpaceX must ensure that that unprecedented power can be controlled (and survived).
The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air— Wes (@wmorrill3) April 16, 2024
This, unfortunately, is far from the first iteration of this story. SpaceX has been seemingly close to the milestone at many points over the last year and a half. In September 2021, for example, CEO Elon Musk reported that Super Heavy Booster 4 would attempt the first static fire on Starbase’s orbital launch mount later that month. Eleven months later, Super Heavy Booster 7 gave the OLM its inaugural static fire test – albeit with just one of its 33 engines.
In the months following that static fire, Booster 7 completed another single-engine test, a two-engine test, a seven-engine test, a fourteen-engine test, and a long-duration eleven-engine test. All of that slow and steady testing has been fairly successful and caused no major damage to the rocket or pad. But five months after it began, SpaceX has never ignited more than 14 – 42% – of Super Heavy’s 33 Raptor engines at once. That must change before SpaceX can gain enough confidence in Starship for (and convince the FAA to license) an orbital launch attempt.
During Super Heavy B7’s 14-engine static fire, the booster could have produced up to 3220 tons (7.1 million pounds) of thrust. When it ignites all 33 available engines for the first time, its maximum thrust could leap to 7590 tons (16.7 million pounds), beating the next most powerful rocket in history – the Soviet N1 – by nearly 60%. In other words, SpaceX will be attempting something unprecedented in rocketry. Success is far from guaranteed and the worst possible failure mode could almost entirely destroy Starship’s only finished orbital launch site, explaining SpaceX’s unusual caution.
On January 23rd, Ship 24 and Booster 7 completed Starship’s first full wet dress rehearsal (a fueling and launch rehearsal test) on the first try – an extremely impressive achievement for any rocket, let alone the largest in history. With that combined test out of the way, the only unprecedented test standing between Starship and its first orbital launch attempt is a 33-engine Super Heavy static fire.
To reduce risk, Ship 24 was removed from Booster 7. Back at the factory, SpaceX needs to close a few gaps left in its heat shield, and will likely also conduct careful inspections to ensure that the Starship is ready for flight. Unburdened of Ship 24, Booster 7 may finally be on the cusp of the most challenging ground test in Starship and SpaceX history. SpaceX has scheduled 12-hour road closures that could be used for that purpose as early as January 30th, 31st, and February 1st.
Those road closures could be used for Ship 25 static fire testing instead of or in addition to Booster 7. The Super Heavy is also missing an important hydraulic power unit (HPU) that was removed before the wet dress rehearsal. It’s unclear if static fire testing can be conducted without that HPU (one of two), why it was removed, or how long replacing it will take, adding more uncertainty. Nonetheless, it still appears that SpaceX is no more than a few weeks away from Starship’s first 33-engine static fire attempt.
News
Tesla FSD V14.2 starts rolling out to initial batch of vehicles
It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.
Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.
So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well.
Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots.
It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.
Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.


Release Notes
2025.38.9.5
Currently Installed
FSD (Supervised) v14.2
Full Self-Driving (Supervised) v14.2 includes:
- Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
- Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
- Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
- Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
Upcoming Improvements:
- Overall smoothness and sentience
- Parking spot selection and parking quality
News
Tesla Model X lost 400 pounds thanks to these changes
The Tesla Model X has always been one of the company’s most loved vehicles, despite its low sales figures, which can be attributed to its high price tag.
However, the Model X has been a signature item on Tesla’s menu of cars, most notably recognized by its Falcon Wing Doors, which are aware of its surroundings and open according to what’s around it.
But recent improvements to the Model X were looking slim to none, but it appears most of the fixes actually happened under the body, at least according to Tesla’s Vice President of Powertrain, Lars Moravy.
In a recent interview with Car and Driver, Moravy detailed all of the changes to the 2026 iteration of the vehicle, which was about 400 pounds lighter than it was originally. The biggest change is a modification with the rear motor, switching from an induction-type motor to a permanent-magnet design and optimizing the half-shafts, which shed about 100 pounds.
Tesla also got “almost 80 pounds out of the interior bits and pieces,” which “included making parts thinner, different manufacturing process choices, and incorporating airbag-deployment requirements into the headliner fabric,” the report said.
Additionally, the standard five-passenger, bench seat configuration saved 50 pounds by ditching pedestal mounting. This also helped with practicality, as it helped the seat fold flat. Engineers at Tesla also saved 44 pounds from the high-voltage wiring through optimizing the wiring from the charge-port DC/DC converter and switching from copper to aluminum wiring.
Tesla makes a decision on the future of its flagship Model S and Model X
Tesla also simplified the cooling system by reducing the number of radiators. It also incorporated Nürburgring cooling requirements for the Plaid variant, which saved nearly 30 pounds.
Many Tesla fans will be familiar with the megacastings, manufactured in-house by presses from IDRA, which also saves more than 20 pounds and boosts torsional stiffness by around 10 percent. Tweaks to the suspension also saved 10 pounds.
People were truly disappointed with what Tesla did with the Model S and Model X, arguing that the cars needed a more severe exterior overhaul, which might be true. However, Tesla really did a lot to reduce the weight of the vehicle, which helps increase range and efficiency. According to Grok, every 200 pounds removed adds between 7 and 15 percent to range estimations.
This makes sense considering the range estimations both increased by 7 percent from the Model X’s 2025 configuration to the 2026 builds. Range increased on the All-Wheel-Drive trim from 329 miles to 352 miles, while the Plaid went from 314 miles to 335 miles.
News
Tesla launches its new branded Supercharger for Business with first active station
Tesla has officially launched its first branded Supercharger just months after initiating a new program that allows third-party companies to brand their own charging piles.
The site opened in Land O’ Lakes, Florida, and features eight V4 Supercharging stalls offering up to 325 kW of charging speed. It appears it was purchased by a company called Suncoast Credit Union. This particular branch is located Northeast of Tampa, which is on the Gulf of Mexico.
It features graphics of Florida animals, like alligators:
Here’s a video of the graphics being installed on the Tesla Superchargers at this site: https://t.co/oIfEPNZjAH pic.twitter.com/ENWakZ2qT9
— TESLARATI (@Teslarati) November 20, 2025
Tesla launched this program back in September, and it basically was a way to expand its Supercharger presence and also allow companies to pay for the infrastructure. Tesla maintains it. When it announced the “Supercharger for Business,” it said:
“Purchase and install Superchargers at your business. Superchargers are compatible with all electric vehicles, bringing EV drivers to your business by offering convenient, reliable charging.”
The program does a few things. Initially, it expands EV charging infrastructure and makes charging solutions more readily available for drivers. It can also attract people to those businesses specifically.
Tesla launches new Supercharger program that business owners will love
The chargers can also be branded with any logo that the business chooses, which makes them more personalized and also acts as an advertisement.
The best part is that the customers do not have to maintain anything about the Supercharger. Tesla still takes care of it and resolves any issues:
“We treat your site like we treat our sites. By providing you with a full-service package that includes network operations, preventative maintenance, and driver support, we’re able to guarantee 97% uptime–the highest in the industry.”
It appears the Superchargers will also appear within the in-car nav during routing, so they’ll be publicly available to anyone who needs to use them. They are still available to all EVs that have worked with Tesla to utilize its infrastructure, and they are not restricted to people who are only visiting the business.