Connect with us

News

SpaceX stress-tests Starship-catching arms with giant water balloons

Published

on

SpaceX has begun testing Starbase’s rocket-catching arms with ballast to simulate the weight of Starship and Super Heavy.

SpaceX started the process of proof testing those arms about a week ago, beginning with some basic calibration work. Together, the three arms and launch tower amount to a giant custom-built robot that SpaceX CEO Elon Musk has deemed “Mechazilla.” Controlled with a complex system of hydraulic and electromechanical actuators spread throughout each structure, SpaceX must calibrate all of those devices to enable the full range of motion the arms are meant to be capable of. To do so, SpaceX appeared to actuate both catch arms (also known as “chopsticks”) as far as they were able to move on January 4th, producing data that could be fed back into the system’s control software to properly set limits of motion.

A handful of days later, arm testing continued, with SpaceX lifting the carriage higher than it had traveled before and demonstrating more complex longitudinal movements that required synchronized motion of both arms. On January 9th, SpaceX performed the most ambitious arm testing yet, nearly lifting the arms to the top of their ~140 meter (~460 ft) tall launch tower backbone to simulate the range of vertical motion required to lift and stack Starship and Super Heavy.

(NASASpaceflight – bocachicagal)

SpaceX also installed a temporary frame meant to simulate a Starship or Super Heavy booster, foreshadowing additional testing planned in the coming days. That jig upped the stakes for the longitudinal actuation portion of January 9th’s testing, as anything less than the precise, synchronized movement of both arms could have caused the heavy steel frame to fall hundreds of feet onto a range of equipment and structures directly below it. Thankfully, the arms performed well and returned to their resting position without issue.

On January 11th, SpaceX proceeded to install six ‘water bags’ – three to a side – on the Starship simulator frame. Amounting to giant, heavy-duty water balloons, those bags are routinely used to stress-test large structures and devices by simulating payloads that might be too expensive or inconvenient to use solely for testing purposes. With those seemingly empty bags attached, SpaceX proceeded to move the catch arms up and down the full length of the launch tower at record speed, taking about seven minutes to climb and descend ~120 meters (~400 ft) – averaging a brisk 0.6 mph or 1 km/h.

On January 12th, SpaceX filled the balls with water, producing some… interesting… visuals. Ridiculous appearances aside, the six bags SpaceX chose to use could be 20, 35, or 50-ton variants, meaning that all six could weigh anywhere from 120 to 300 tons (264,000-660,000 lb) if fully filled. In other words, perfect for simulating the dry masses of Starship (roughly 80-120 tons) and Super Heavy (150-200+ tons).

The author could not be reached for comment. (NASASpaceflight – bocachicagal)
This is serious business! (NASASpaceflight – bocachicagal)

SpaceX did appear to fully fill around four of the six bags and partially filled the other two, causing the whole arm structure to visibly sag during the fill process as the weight of the ballast stretched the several-inch-thick steel cable holding the whole device aloft. In the late afternoon, the laden arms lifted around 10-20 meters and rotated left and right, partially demonstrating the process of rotating a lifted Starship or Super Heavy into position for stacking or launch mount installation. They were never lifted high enough to truly demonstrate that ability, though, and were lowered back to the ground soon after.

As of 10pm CST, January 12th, the water bags appear to have been fully drained after their first excursion. It’s likely that load-testing will continue over the next several days or weeks – SpaceX may just want to avoid leaving the arms fully loaded overnight.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk’s Boring Company opens Vegas Loop’s newest station

The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.

Published

on

Credit: The Boring Company/X

Elon Musk’s tunneling startup, The Boring Company, has welcomed its newest Vegas Loop station at the Fontainebleau Las Vegas.

The Fontainebleau is the latest resort on the Las Vegas Strip to embrace the tunneling startup’s underground transportation system.

Fontainebleau Loop station

The new Vegas Loop station is located on level V-1 of the Fontainebleau’s south valet area, as noted in a report from the Las Vegas Review-Journal. According to the resort, guests will be able to travel free of charge to the stations serving the Las Vegas Convention Center, as well as to Loop stations in Encore and Westgate.

The Fontainebleau station connects to the Riviera Station, which is located in the northwest parking lot of the convention center’s West Hall. From there, passengers will be able to access the greater Vegas Loop.

Vegas Loop expansion

In December, The Boring Company began offering Vegas Loop rides to and from Harry Reid International Airport. Those trips include a limited above-ground segment, following approval from the Nevada Transportation Authority to allow surface street travel tied to Loop operations.

Under the approval, airport rides are limited to no more than four miles of surface street travel, and each trip must include a tunnel segment. The Vegas Loop currently includes more than 10 miles of tunnels. From this number, about four miles of tunnels are operational.

The Boring Company President Steve Davis previously told the Review-Journal that the University Center Loop segment, which is currently under construction, is expected to open in the first quarter of 2026. That extension would allow Loop vehicles to travel beneath Paradise Road between the convention center and the airport, with a planned station located just north of Tropicana Avenue.

Continue Reading

News

Tesla leases new 108k-sq ft R&D facility near Fremont Factory

The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.

Published

on

Credit: Tesla

Tesla has expanded its footprint near its Fremont Factory by leasing a 108,000-square-foot R&D facility in the East Bay. 

The lease adds to Tesla’s presence near its primary California manufacturing hub as the company continues investing in autonomy and artificial intelligence.

A new Fremont lease

Tesla will occupy the entire building at 45401 Research Ave. in Fremont, as per real estate services firm Colliers. The transaction stands as the second-largest R&D lease of the fourth quarter, trailing only a roughly 115,000-square-foot transaction by Figure AI in San Jose.

As noted in a Silicon Valley Business Journal report, Tesla’s new Fremont lease was completed with landlord Lincoln Property Co., which owns the facility. Colliers stated that Tesla’s Fremont expansion reflects continued demand from established technology companies that are seeking space for engineering, testing, and specialized manufacturing.

Tesla has not disclosed which of its business units will be occupying the building, though Colliers has described the property as suitable for office and R&D functions. Tesla has not issued a comment about its new Fremont lease as of writing.

AI investments

Silicon Valley remains a key region for automakers as vehicles increasingly rely on software, artificial intelligence, and advanced electronics. Erin Keating, senior director of economics and industry insights at Cox Automotive, has stated that Tesla is among the most aggressive auto companies when it comes to software-driven vehicle development.

Other automakers have also expanded their presence in the area. Rivian operates an autonomy and core technology hub in Palo Alto, while GM maintains an AI center of excellence in Mountain View. Toyota is also relocating its software and autonomy unit to a newly upgraded property in Santa Clara.

Despite these expansions, Colliers has noted that Silicon Valley posted nearly 444,000 square feet of net occupancy losses in Q4 2025, pushing overall vacancy to 11.2%.

Advertisement
Continue Reading

News

Tesla winter weather test: How long does it take to melt 8 inches of snow?

Published

on

Credit: Teslarati

In Pennsylvania, we got between 10 and 12 inches of snow over the weekend as a nasty Winter storm ripped through a large portion of the country, bringing snow to some areas and nasty ice storms to others.

I have had a Model Y Performance for the week courtesy of Tesla, which got the car to me last Monday. Today was my last full day with it before I take it back to my local showroom, and with all the accumulation on it, I decided to run a cool little experiment: How long would it take for Tesla’s Defrost feature to melt 8 inches of snow?

Tesla Model Y Performance set for new market entrance in Q1

Tesla’s Defrost feature is one of the best and most underrated that the car has in its arsenal. While every car out there has a defrost setting, Tesla’s can be activated through the Smartphone App and is one of the better-performing systems in my opinion.

It has come in handy a lot through the Fall and Winter, helping clear up my windshield more efficiently while also clearing up more of the front glass than other cars I’ve owned.

The test was simple: don’t touch any of the ice or snow with my ice scraper, and let the car do all the work, no matter how long it took. Of course, it would be quicker to just clear the ice off manually, but I really wanted to see how long it would take.

Tesla Model Y heat pump takes on Model S resistive heating in defrosting showdown

Observations

I started this test at around 10:30 a.m. It was still pretty cloudy and cold out, and I knew the latter portion of the test would get some help from the Sun as it was expected to come out around noon, maybe a little bit after.

I cranked it up and set my iPhone up on a tripod, and activated the Time Lapse feature in the Camera settings.

The rest of the test was sitting and waiting.

It didn’t take long to see some difference. In fact, by the 20-minute mark, there was some notable melting of snow and ice along the sides of the windshield near the A Pillar.

However, this test was not one that was “efficient” in any manner; it took about three hours and 40 minutes to get the snow to a point where I would feel comfortable driving out in public. In no way would I do this normally; I simply wanted to see how it would do with a massive accumulation of snow.

It did well, but in the future, I’ll stick to clearing it off manually and using the Defrost setting for clearing up some ice before the gym in the morning.

Check out the video of the test below:

Continue Reading