News
SpaceX almost drops finished Starship prototype – but it might be salvageable
Less than 48 hours after Starship SN8’s (successful) demise, something on or around a metal stand holding up SpaceX’s next completed Starship collapsed, causing the rocket to rapidly tilt sidewise and smash into the assembly building containing it.
Put simply, launch vehicles very rarely designed or expected to survive the kind of structural loads the fall and impact put Starship SN9 through and the early prognosis – prior to any up-close observation – was not not great. Weighing at least 50-70 metric tons (110,000-155,000 lb), any other rocket – and possibly even Starship itself – should have been damaged beyond repair from anything less than a minor bump.
Instead, Starship SN9 – fully assembled and perhaps just a few days away from a scheduled transport to the launch pad – shifted some 10 degrees (~10 m/30 ft) in a few seconds, seemingly coming to rest against scaffolding and the interior wall of SpaceX’s “high bay” assembly building. Had Starship fallen 180 degrees in the opposite direction, the results could have been catastrophic, potentially falling without a wall to stop it onto a Super Heavy booster section that could have had workers inside it. Luckily, the (hopeful) wakeup call was apparently benign, with SpaceX escaping loss of life or limb and avoiding any catastrophic damage.
Perhaps even worse, less than a day prior, a number of VIPs, SpaceX executives, investors, and even Elon Musk himself were touring the company’s Starship factory and standing feet away from SN9 itself. The most likely culprit of SN9’s fall may even be visible in photos taken by Steve Jurvetson, one such investor. In a few of those photos, Starship’s steel work stand – a staple of SpaceX’s Starship factories for ~18 months – appears to be precariously balanced upon five or six jacks with nothing more than gravity, SN9’s own mass, and some counterweights hold them together.

If those jacks – as they appear to be – weren’t bolted to the high bay’s concrete foundation or Starship SN9’s work stand, it could have been unintuitively easy to trigger a collapse like the one that occurred, perhaps requiring a minor bump with a forklift, a particularly extreme gust of wind, or some other kind of lateral force.
Regardless of why it happened, the end result was the same. Somewhat miraculously, Starship SN9 – as photos would soon show – appeared to be almost entirely unscathed, baring no obvious hull damage. The rocket’s fore and aft starboard flaps, however, were clearly crumpled. In fact, it’s possible that the crumpling of those largely empty, thin-skinned flaps acted just like the crumple zones designed into modern cars, essentially soaking up the energy of SN9’s impact with the wall and saving the rest of the rocket.


Still, the reality is that Starship SN9’s prognosis is still unlikely to be good, even if crumpling flaps seemingly prevented the rocket from becoming an unequivocal write-off. Depending on how strong SN9’s flaps were, the force of the impact could have easily been transferred into the structural hinges that connect them to Starship, warping internal stiffeners, the hinge mechanism itself, or even the entire curvature of its cylindrical steel hull.
If somehow limited to just the hinges or, even less likely, if the flaps took almost all of the impact energy, SN9 might be repairable. Even then, it’s unlikely that SpaceX will be able to hold to the schedule previously discussed on Teslarati, meaning that Starship SN9’s journey to the launch pad probably isn’t going to happen on Monday, December 14th. In the meantime, SpaceX will likely kick work on Starship SN10 – perhaps just a week or two behind SN9 – into full gear.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
