Connect with us

News

SpaceX's new Starship test stand to make life a little easier for Raptor engine engineers

According to SpaceX CEO Elon Musk, one seemingly small tweak to Starship engine testing could make life much easier for Raptor engineers. (SpaceX)

Published

on

SpaceX recently debuted a new rocket engine test stand at its Central Texas development facilities and one specific aspect of the so-called ‘tripod stand’ could make life a lot easier for Starship’s Raptor engine engineers.

The success of SpaceX’s extremely ambitious Starship spacecraft and Super Heavy boosters hinges heavily on the prior success of a next-generation rocket engine the company is developing itself. Known as Raptor, the engine is likely one of the most complex ever developed, owing to its use of a combustion cycle that’s as challenging and unforgiving as it is efficient. That efficiency is the draw.

The decision to base the Starship launch system around methane and oxygen propellant – relatively dense, safe to handle, and easy to generate on Mars – means that it can never be as efficient as a rocket based on hydrogen and oxygen, the pinnacle of chemical combustion-based propulsion. For a methalox rocket as nominally reusable as Starship, going to extremes to eke even a smidge of extra efficiency out of its Raptor engines is a reasonable – if not necessary – decision. However, that pursuit of efficiency carries many hurdles with it, some of which can even be exacerbated by the equipment used to test those engines on the ground.

SpaceX mocked up Starship Mk1 with three Raptor engines in late-September, but all three departed Boca Chica shortly after Musk’s presentation. (SpaceX)

Raptor is less than unique in this particular case but SpaceX’s engine development and testing has matured to the point that the stands it’s relied on for static fires have become a detriment to the engine’s progress. Specifically, aside from Starhopper, all previous Raptor static fires have been performed with engines installed horizontally in test bays located at SpaceX’s McGregor, Texas development facilities. While in flight, Raptor engines will theoretically never experience wear and tear similar to the unique conditions imposed by horizontal testing – engine burns will almost invariably exert forces along a vertical (up and down) axis.

To almost anyone else, even other engine development companies, this might seem like an insignificant difference. Built around the full-flow staged combustion (FFSC) cycle and meant to be unprecedentedly reusable and reliable, the Raptor engine is not quite as forgiving. Since the engine’s inaugural full-scale static fire test just one year ago, SpaceX CEO Elon Musk has noted several times that Raptor could benefit from new vertical test stands.

Advertisement

Speaking in October 2019, Musk stated that a new vertical test stand would “hopefully allow simplification of Raptor design, as pump shaft wear & drainage is better in vertical config.” More generally, testing Raptor engines vertically would also be “more representative of flight [conditions]”, allowing SpaceX to live up to its proven “test as you fly” philosophy.

Pictured here in April 2018, SpaceX’s McGregor, Texas ‘tripod stand’ is visible to the right of the more functional flat-ground stand that replaced it. Also present is the first Falcon 9 Block 5 booster, B1046. (Aero Photo)

Indeed, aside from Starhopper’s two successful test flights and a handful of static fires, Raptor has performed barely any vertical testing despite more than 3200 seconds of static fires completed with 18 full-scale engine prototypes in the last 12 months alone. Including subscale engines tested from 2016 through 2018, SpaceX’s Raptor engine has likely completed some 5000 seconds (>80 minutes) of test fires over the course of three and a half years of development.

Aside from allowing SpaceX engineers to potentially simplify the Raptor engine design and test the Starship engines in conditions much closer to what they will experience in flight, the addition of a new dedicated test stand – on top of two existing horizontal bays – should allow even more testing to be done in a given time-frame. The more testing that can be done, the more engines SpaceX can quickly qualify for flight, and given that every Starship/Super Heavy pair could require up to 43 new Raptor engines, SpaceX will need all the testing capacity it can get.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading