Connect with us

News

SpaceX sets dates for Starship static fire, high-altitude launch debut

Published

on

CEO Elon Musk says that SpaceX is set to attempt one final Raptor engine static fire test before putting Starship through its high-altitude launch debut later this week.

Liable to begin as soon as November 30th per public road closure notices, Musk says that Starship serial number 8’s (SN8) launch debut – both Starship’s first fully-assembled flight test and first high-altitude launch attempt – is now scheduled no earlier than (NET) 8 am to 5 pm CST (UTC-6) on Wednesday, December 2nd.

November 30th will instead host what is believed to be a unique kind of static fire test for Starship SN8, hopefully proving that the rocket has a decent shot at surviving its risky launch debut.

As previously discussed on Teslarati, SpaceX’s Starship development strategy means that SN8’s survival is far less important than it may seem.

Advertisement

“On November 25th, Starship SN9 (featuring “small improvements”) was stacked to its full 50-meter (~165 ft) height. If SN8 is destroyed during testing, SN9 will likely be ready to roll to the launch site almost as soon as the dust settles.

Meanwhile, Starship SN10 is likely just 7-10 days away from a similar nosecone stacking milestone, and Starship SN11’s tank section is just one stack away from completion, likely putting it less than two weeks behind SN10. In other words, insofar as speed is a priority and each prototype is anywhere close to as cheap as Starship’s majority-steel bill of materials might suggest, SpaceX is building Starships so quickly that it almost doesn’t make sense to spend more than a few weeks working through bugs on any single suborbital ship.”


Teslarati.com — November 25th, 2020

In fact, delaying SN8’s launch to try to refine the rocket in situ and better ensure success could actually be to the detriment of successive prototypes and the Starship program in general. If, for example, a fundamental design flaw is revealed in Starship SN8 only after the prototype’s first test flight, SpaceX could be forced to scrap a huge amount of work done on as many as six, seven, eight, or even more subsequent prototypes. In that since, while it may seem like caution maximizes the value any single Starship prototype can provide SpaceX, that’s only true as long as the Starship design is mature enough that new fundamental flaws are unlikely to arise.

Given how young SpaceX’s agile Starship development program is, it would make very little sense to hinge months of work and more than half a dozen rocket prototypes on the quality and success of a less mature prototype unless all the vehicles in question are more or less identical final products. SN8 through SN15+ are certainly not final products in the sense that Starship is meant to be the largest reusable orbital spacecraft ever built.

As such, the Starship program is probably better off if SpaceX pushes vehicles to failure as quickly as reasonably possible. Having now spent more than two months at the launch pad while no less than three full-scale prototypes rapidly approach a similar level of completion, Starship SN8’s test flow is likely an overcorrection from a haphazardly rushed schedule to extreme caution.

Advertisement

Along those lines, SpaceX is now hopefully set on launching Starship SN8 within the near future. First, though, the company apparently plans to attempt another Raptor engine static fire test on Monday, November 30th. Scheduled between 7 am and 9 pm CST, the test has been described as a “handoff” static fire, referring to the process of switching each Raptor engine’s propellant feed from Starship’s main tank to much smaller ‘header’ tanks reserved for landings.

To land, Starship SN8 will need to successfully switch from main to secondary propellant tanks and ignite one, two, or all three Raptor engines multiple times in close proximity. (Elon Musk)
Starship SN5’s common methane and oxygen tank dome (and spherical methane header tank) is pictured here on May 1st. (NASASpaceflight – bocachicagal)

What exactly that handoff refers to is unclear. It could mean that SN8 will switch from main tanks to header tanks during a Raptor static fire test, though it’s unclear why that capability would be necessary unless Starship’s current header tank design is too small. “Handoff” could also refer to the process of switching between main and header tanks between Raptor operations – far more likely. In other words, Starship SN8’s Monday testing might involve two back-to-back static fires, performed with no human intervention. If successful, such a handoff static fire would simultaneously test Starship’s ability switch propellant sources and perform multiple Raptor engine ignitions – both necessary for a launch and landing.

Starship SN9 was stacked to its full height on November 25th and should be structurally complete in a matter of days. (NASASpaceflight – bocachicagal)

Musk himself believes that Starship SN8 has a ~33% chance of successfully launching, reaching apogee, stably ‘skydiving’ ~14 km (~9 mi) back to Earth, reigniting Raptor engines, and landing in one piece. It’s unclear what will happen in the seemingly unlikely event that SN8 survives, but Starship SN9 is practically nipping at the relatively ancient prototype’s heels.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla engineers deflected calls from this tech giant’s now-defunct EV project

Published

on

Image Created by Grok

Tesla engineers deflected calls from Apple on a daily basis while the tech giant was developing its now-defunct electric vehicle program, which was known as “Project Titan.”

Back in 2022 and 2023, Apple was developing an EV in a top-secret internal fashion, hoping to launch it by 2028 with a fully autonomous driving suite.

However, Apple bailed on the project in early 2024, as Project Titan abandoned the project in an email to over 2,000 employees. The company had backtracked its expectations for the vehicle on several occasions, initially hoping to launch it with no human driving controls and only with an autonomous driving suite.

Apple canceling its EV has drawn a wide array of reactions across tech

It then planned for a 2028 launch with “limited autonomous driving.” But it seemed to be a bit of a concession at that point; Apple was not prepared to take on industry giants like Tesla.

Wedbush’s Dan Ives noted in a communication to investors that, “The writing was on the wall for Apple with a much different EV landscape forming that would have made this an uphill battle. Most of these Project Titan engineers are now all focused on AI at Apple, which is the right move.”

Apple did all it could to develop a competitive EV that would attract car buyers, including attempting to poach top talent from Tesla.

In a new podcast interview with Tesla CEO Elon Musk, it was revealed that Apple had been calling Tesla engineers nonstop during its development of the now-defunct project. Musk said the engineers “just unplugged their phones.”

Musk said in full:

“They were carpet bombing Tesla with recruiting calls. Engineers just unplugged their phones. Their opening offer without any interview would be double the compensation at Tesla.”

Interestingly, Apple had acquired some ex-Tesla employees for its project, like Senior Director of Engineering Dr. Michael Schwekutsch, who eventually left for Archer Aviation.

Tesla took no legal action against Apple for attempting to poach its employees, as it has with other companies. It came after EV rival Rivian in mid-2020, after stating an “alarming pattern” of poaching employees was noticed.

Continue Reading

Elon Musk

Tesla to a $100T market cap? Elon Musk’s response may shock you

Published

on

tesla elon musk

There are a lot of Tesla bulls out there who have astronomical expectations for the company, especially as its arm of reach has gone well past automotive and energy and entered artificial intelligence and robotics.

However, some of the most bullish Tesla investors believe the company could become worth $100 trillion, and CEO Elon Musk does not believe that number is completely out of the question, even if it sounds almost ridiculous.

To put that number into perspective, the top ten most valuable companies in the world — NVIDIA, Apple, Alphabet, Microsoft, Amazon, TSMC, Meta, Saudi Aramco, Broadcom, and Tesla — are worth roughly $26 trillion.

Will Tesla join the fold? Predicting a triple merger with SpaceX and xAI

Cathie Wood of ARK Invest believes the number is reasonable considering Tesla’s long-reaching industry ambitions:

“…in the world of AI, what do you have to have to win? You have to have proprietary data, and think about all the proprietary data he has, different kinds of proprietary data. Tesla, the language of the road; Neuralink, multiomics data; nobody else has that data. X, nobody else has that data either. I could see $100 trillion. I think it’s going to happen because of convergence. I think Tesla is the leading candidate [for $100 trillion] for the reason I just said.”

Musk said late last year that all of his companies seem to be “heading toward convergence,” and it’s started to come to fruition. Tesla invested in xAI, as revealed in its Q4 Earnings Shareholder Deck, and SpaceX recently acquired xAI, marking the first step in the potential for a massive umbrella of companies under Musk’s watch.

SpaceX officially acquires xAI, merging rockets with AI expertise

Now that it is happening, it seems Musk is even more enthusiastic about a massive valuation that would swell to nearly four-times the value of the top ten most valuable companies in the world currently, as he said on X, the idea of a $100 trillion valuation is “not impossible.”

Tesla is not just a car company. With its many projects, including the launch of Robotaxi, the progress of the Optimus robot, and its AI ambitions, it has the potential to continue gaining value at an accelerating rate.

Musk’s comments show his confidence in Tesla’s numerous projects, especially as some begin to mature and some head toward their initial stages.

Continue Reading

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading