Connect with us

News

SpaceX outfits Starship, Super Heavy with dozens of Raptor engines

Published

on

New photos shared by SpaceX show that the company has nearly finished installing a total of 39 upgraded Raptor engines on a new Starship and its Super Heavy booster.

Those prototypes – known as Ship 24 and Booster 7 – could be tasked with supporting Starship’s first orbital launch attempt sometime later this year if both make it through upcoming test campaigns without major issues. Whether that’s a probable outcome is still uncertain but recent progress suggests that it won’t take long for the prospects of both prototypes to shift into clearer focus.

After several rounds of proof testing and two trips to and from SpaceX’s Starbase, Texas orbital launch site (OLS) in March, April, and May, Super Heavy Booster 7 (B7) made its third trip to the pad on June 23rd.

“SpaceX used the six weeks Booster 7 spent back in a factory assembly bay to finish installing aerocovers, surfaces known as chines or strakes, car-sized grid fins, Starlink internet dishes, and – most importantly – 33 upgraded Raptor V2 engines. Combined, Booster 7 could produce up to 7600 metric tons (~16.8M lbf) of thrust at or before liftoff. Crucially, SpaceX also finished installing most of Booster 7’s Raptor heat shield in the same period, completing in six weeks work that took Booster 4 closer to half a year. With its heat shield and all 33 Raptors mostly in place, Booster 7 should be ready to kick off static fire testing almost as soon as it’s installed on Starbase’s orbital launch mount.”

Teslarati.com – June 24th, 2022

Booster 7 awaits its next round of tests. (NASASpaceflight – bocachicagal)

Building, qualifying, shipping, and installing 33 new Raptor 2 engines on Super Heavy B7 was already an impressive achievement and produced the most (potentially) powerful rocket booster ever assembled. On July 2nd, a pair of photos published by SpaceX showed off Booster 7’s nearly-finished engine section and simultaneously revealed that the company has finished installing all six of Starship S24’s Raptor engines – and even part of the ship’s aft thermal protection.

Differences are already visible between Ship 24 and Ship 20, the only other Starship prototype to have six Raptors installed. The most notable change is the addition of a metal framework that covers the entire breadth of the ship’s aft – most likely destined to support flat sections of insulation and thermal protection that will partially seal off sensitive engine, plumbing, pressure vessels, and avionics components located inside Starship’s aft. That extra shielding should help limit the extreme conditions that hardware will be subjected to during ground testing and, perhaps, in flight.

Advertisement
-->
Ship 20, August 2021. (SpaceX – Elon Musk)
Ship 24, July 2022. (SpaceX)

Super Heavy Booster 7 has already completed a significant amount of testing, including four cryogenic proofs (cryoproofs) and one Raptor thrust simulation test. Since its third return to the pad, SpaceX has several more ambiguous tests, none of which appeared to involve cryogenic propellant loading. It’s possible that those tests focused more on Booster 7’s pressurization system, perhaps filling its tanks with the hot oxygen and methane gases it will eventually use to pressurize its tanks. It’s likely that SpaceX wants to put Booster 7 through at least one successful wet dress rehearsal – using real liquid methane and oxygen propellant – before attempting to static fire any of its 33 Raptors. Booster 7’s aft thermal protection system also isn’t entirely complete, so technicians will need to finish installing several more panels before any static fire testing.

SpaceX technicians handle one of the dozens of heat shield panels that will eventually protect Super Heavy B7’s Raptors from themselves. (NASASpaceflight – bocachicagal | July 3rd, 2022)

Alongside B7, Starship S24 has completed a good amount of cryoproof and Raptor thrust simulation testing, which it survived without any irreperable issues. The ship was then returned to an assembly bay on June 9th, where where workers have been installing heat shield tiles, finalizing the ship’s engine section, and completing dozens of other less visible closeout tasks. SpaceX also recently finished modifying one of its two suborbital test and launch mounts for Starship static fire testing, leaving the other mount semi-permanently modified for cryoproof and thrust simulation testing of future prototypes.

SpaceX has requested permission for road closures – each a potential 12-hour test window – on July 5th, 6th, 7th, 11th, and 12th.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading

News

Tesla FSD (Supervised) is about to go on “widespread” release

In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”

Published

on

Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin. 

The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.

FSD V14.2 improvements

FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.

A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.

Elon Musk’s predicted wide release

The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”

FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles. 

Advertisement
-->
Continue Reading

News

Tesla FSD V14.2 starts rolling out to initial batch of vehicles

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Published

on

Credit: Grok Imagine

Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.

So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well. 

Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots. 

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.

Advertisement
-->

Release Notes

2025.38.9.5

Currently Installed

FSD (Supervised) v14.2

Full Self-Driving (Supervised) v14.2 includes:

  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
  • Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!

Upcoming Improvements:

  • Overall smoothness and sentience
  • Parking spot selection and parking quality
Continue Reading