News
SpaceX fires up Starship and Super Heavy booster hours apart
SpaceX appears to have successfully fired up a Starship and Super Heavy booster hours apart, testing a total of three new Raptor 2 engines on the two rockets.
SpaceX says it completed a two-engine static fire with Starship 24 less than three hours after the company successfully ignited a Raptor 2 engine installed on a rocket prototype for the first time. That earlier test, performed by Super Heavy Booster 7, was also the first time SpaceX used its new Starbase orbital launch site to support a static fire test and the second-ever static fire of a Starship booster prototype. Had the company called it quits after Booster 7 survived its first intentional trial by fire, it would have still been an exceptionally successful day.
But SpaceX wasn’t done.
Instead, after Booster 7’s seemingly flawless single-Raptor static fire at 5:25 pm CDT, SpaceX loaded Starship 24 with a small amount of liquid oxygen and methane propellant and ignited two of the ship’s six engines around 8:18 pm. It was not initially clear how many engines were involved but a tweet from SpaceX later confirmed it was two. More likely than not, one of those engines was a sea level-optimized Raptor with a smaller bell nozzle and the other was a vacuum-optimized Raptor with a much larger nozzle.
Almost ten months ago, Starship 20 – SpaceX’s first potentially orbital-class Starship prototype – began static fire testing in a somewhat similar way. Its first day of static fires began with a single Raptor Vacuum engine and ended with a simultaneous RVac and sea-level Raptor test in October 2021. In some ways, SpaceX has been a bit less cautious with Starship 24, which is the second potentially orbital-class prototype to begin proof testing. Ship 24 already has all six Raptors installed, whereas Ship 20 only had four of six engines installed during its first static fire tests. SpaceX also took about three weeks to progress from Ship 20’s first static fire test to its first static fire of all six engines, whereas it appears that Ship 24 could potentially attempt its first six-engine test just a few days to a week later.
On the other hand, Ship 24’s path to its first static fire was substantially longer than Ship 20’s. Ship 20 completed its first static fire test(s) just 25 days after its first proof test, referring to the process of verifying that the prototype was in good working order before moving on to riskier testing with flammable propellant and intentional ignitions. Ship 20 also completed its first six-engine static fire 46 days after testing began. Ship 24, meanwhile, took 75 days to go from its first proof test to its first static fire – almost three times slower than Ship 20, a prototype that was essentially the first of its kind.
It’s possible that Ship 24’s upgraded Raptor 2 engines are partially or fully to blame. Instead of jumping straight into ‘hot’ Raptor testing like Ship 20, which began that particular campaign with a partial-ignition preburner test, SpaceX put Ship 24 through seven ‘spin-prime’ tests before its first static fire. For Raptor, spin-primes test the ignition step before preburner ignition, which is itself a step before main combustion chamber ignition (where the engine starts to produce meaningful thrust). Raptor startup procedures likely involve flowing high-pressure gaseous helium, nitrogen, or propellant (oxygen/methane) through the engine to spin up its turbopumps, ‘priming’ them for preburner and main combustion chamber ignition.
On Raptor 1, the preburners would ignite once a high enough flow rate was achieved, producing hot gas that the main combustion chamber would mix and ignite one last time to start the engine. In a recent interview with Tim Dodd (“The Everyday Astronaut”), CEO Elon Musk revealed that SpaceX was able to “remove torch igniters” from Raptor 2’s main combustion chamber (MCC). It’s unclear if that means that Raptor 2 now has zero MCC igniters, but a major change in the overall ignition process could explain why the start of Ship 24 and Booster 7 engine testing was so sluggish. So could the unintended explosion Booster 7 caused when SpaceX attempted to spin-prime all 33 of its Raptor 2 engines at once.
Regardless, SpaceX has finally crossed that particular Rubicon and, with any luck, Raptor 2 testing will begin to speed up on both Starship 24 and Super Heavy Booster 7. SpaceX has test windows scheduled on August 11th, 15th, and 16th. A warning distributed to Boca Chica, Texas residents on August 10th confirmed that the company intends to perform at least one more static fire test on the 11th.
News
Tesla’s top-rated Supercharger Network becomes Stellantis’ new key EV asset
The rollout begins in North America early next year before expanding to Japan and South Korea in 2027.
Stellantis will adopt Tesla’s North American Charging System (NACS) across select battery-electric vehicles starting in 2026, giving customers access to more than 28,000 Tesla Superchargers across five countries.
The rollout begins in North America early next year before expanding to Japan and South Korea in 2027, significantly boosting public fast-charging access for Jeep, Dodge, and other Stellantis brands. The move marks one of Stellantis’ largest infrastructure expansions to date.
Stellantis unlocks NACS access
Beginning in early 2026, Stellantis BEVs, including models like the Jeep Wagoneer S and Dodge Charger Daytona, will gain access to Tesla’s Supercharger network across North America. The integration will extend to Japan and South Korea in 2027, with the 2026 Jeep Recon and additional next-generation BEVs joining the list as compatibility expands. Stellantis stated that details on adapters and network onboarding for current models will be released closer to launch, as noted in a press release.
The company emphasizes that adopting NACS aligns with a broader strategy to give customers greater freedom of choice when charging, especially as infrastructure availability becomes a deciding factor for EV buyers. With access to thousands of high-speed stations, Stellantis aims to reduce range anxiety and improve long-distance travel convenience across its global portfolio.
Tesla Supercharger network proves its value
Stellantis’ move also comes as Tesla’s Supercharger system continues to earn top rankings for reliability and user experience. In the 2025 Zapmap survey, drawn from nearly 4,000 BEV drivers across the UK, Tesla Superchargers were named the Best Large EV Charging Network for the second year in a row. The study measured reliability, ease of use, and payment experience across the country’s public charging landscape.
Tesla’s UK network now includes 1,115 open Supercharger devices at 97 public locations, representing roughly 54% of its total footprint and marking a 40% increase in public availability since late 2024. Zapmap highlighted the Supercharger network’s consistently lower pricing compared to other rapid and ultra-rapid providers, alongside its strong uptime and streamlined user experience. These performance metrics further reinforce the value of Stellantis’ decision to integrate NACS across major markets.
News
Tesla FSD and Robotaxis are making people aware how bad human drivers are
These observations really show that Tesla’s focus on autonomy would result in safer roads for everyone.
Tesla FSD and the Robotaxi network are becoming so good in their self-driving performance, they are starting to highlight just how bad humans really are at driving.
This could be seen in several observations from the electric vehicle community.
Robotaxis are better than Uber, actually
Tesla’s Robotaxi service is only available in Austin and the Bay Area for now, but those who have used the service have generally been appreciative of its capabilities and performance. Some Robotaxi customers have observed that the service is simply so much more affordable than Uber, and its driving is actually really good.
One veteran Tesla owner, @BLKMDL3, recently noted that the Robotaxi service has become better than Uber simply because FSD now drives better than some human drivers. Apart from the fact that Robotaxis allow riders to easily sync their phones to the rear display, the vehicles generally provide a significantly more comfortable ride than their manually-driven counterparts from Uber.
FSD is changing the narrative, one ride at a time
It appears that FSD V14 really is something special. The update has received wide acclaim from users since it was released, and the positive reactions are still coming. This was highlighted in a recent post from Tesla owner Travis Nicolette, who shared a recent experience with FSD. As per the Tesla owner, he was quite surprised as his car was able to accomplish a U-turn in a way that exceeded human drivers.
Yet another example of FSD’s smooth and safe driving was showcased in a recent video, which showed a safety monitor of a Bay Area Robotaxi falling asleep in the driver’s seat. In any other car, a driver falling asleep at the wheel could easily result in a grave accident, but thanks to FSD, both the safety monitor and the passengers remained safe.
These observations, if any, really show that Tesla’s focus on autonomy would result in safer roads for everyone. As per the IIHS, there were 40,901 deaths from motor vehicle crashes in the United States in 2023. The NHTSA also estimated that in 2017, 91,000 police-reported crashes involved drowsy drivers. These crashes led to an estimated 50,000 people injured and 800 deaths. FSD could lower all these tragic statistics by a notable margin.
News
Tesla lands approval for Robotaxi operation in third U.S. state
On Tuesday, Tesla officially received regulatory approval from the State of Arizona, making it the third state for the company to receive approval in.
Tesla has officially landed approval to operate its Robotaxi ride-hailing service in its third U.S. state, as it has landed a regulatory green light from the State of Arizona’s Department of Transportation.
Tesla has been working to expand to new U.S. states after launching in Texas and California earlier this year. Recently, it said it was hoping to land in Nevada, Arizona, and Florida, expanding to five new cities in those three states.
On Tuesday, Tesla officially received regulatory approval from the State of Arizona, making it the third state for the company to receive approval in:
BREAKING: Tesla has officially received approval from the Arizona Department of Transportation to launch its Robotaxi service on public roads in the state!
I just confirmed directly with the Arizona DOT that @Tesla applied for a Transportation Network Company permit on Nov 13th.… pic.twitter.com/iKbwfGfiju
— Sawyer Merritt (@SawyerMerritt) November 18, 2025
Tesla has also been working on approvals in Nevada and Florida, and it has also had Robotaxi test mules spotted in Pennsylvania.
The interesting thing about the Arizona approval is the fact that Tesla has not received an approval for any specific city; it appears that it can operate statewide. However, early on, Tesla will likely confine its operation to just one or two cities to keep things safe and controlled.
Over the past few months, Robotaxi mules have been spotted in portions of Phoenix and surrounding cities, such as Scottsdale, as the company has been attempting to cross off all the regulatory Ts that it is confronted with as it attempts to expand the ride-hailing service.
It appears the company will be operating it similarly to how it does in Texas, which differs from its California program. In Austin, there is no Safety Monitor in the driver’s seat, unless the route requires freeway travel. In California, there is always a Safety Monitor in the driver’s seat. However, this is unconfirmed.
Earlier today, Tesla enabled its Robotaxi app to be utilized for ride-hailing for anyone using the iOS platform.