Connect with us

News

SpaceX fires up Starship and Super Heavy booster hours apart

Two rockets; two static fires; three hours. (NASASpaceflight - bocachicagal)

Published

on

SpaceX appears to have successfully fired up a Starship and Super Heavy booster hours apart, testing a total of three new Raptor 2 engines on the two rockets.

SpaceX says it completed a two-engine static fire with Starship 24 less than three hours after the company successfully ignited a Raptor 2 engine installed on a rocket prototype for the first time. That earlier test, performed by Super Heavy Booster 7, was also the first time SpaceX used its new Starbase orbital launch site to support a static fire test and the second-ever static fire of a Starship booster prototype. Had the company called it quits after Booster 7 survived its first intentional trial by fire, it would have still been an exceptionally successful day.

But SpaceX wasn’t done.

Instead, after Booster 7’s seemingly flawless single-Raptor static fire at 5:25 pm CDT, SpaceX loaded Starship 24 with a small amount of liquid oxygen and methane propellant and ignited two of the ship’s six engines around 8:18 pm. It was not initially clear how many engines were involved but a tweet from SpaceX later confirmed it was two. More likely than not, one of those engines was a sea level-optimized Raptor with a smaller bell nozzle and the other was a vacuum-optimized Raptor with a much larger nozzle.

Advertisement

Almost ten months ago, Starship 20 – SpaceX’s first potentially orbital-class Starship prototype – began static fire testing in a somewhat similar way. Its first day of static fires began with a single Raptor Vacuum engine and ended with a simultaneous RVac and sea-level Raptor test in October 2021. In some ways, SpaceX has been a bit less cautious with Starship 24, which is the second potentially orbital-class prototype to begin proof testing. Ship 24 already has all six Raptors installed, whereas Ship 20 only had four of six engines installed during its first static fire tests. SpaceX also took about three weeks to progress from Ship 20’s first static fire test to its first static fire of all six engines, whereas it appears that Ship 24 could potentially attempt its first six-engine test just a few days to a week later.

On the other hand, Ship 24’s path to its first static fire was substantially longer than Ship 20’s. Ship 20 completed its first static fire test(s) just 25 days after its first proof test, referring to the process of verifying that the prototype was in good working order before moving on to riskier testing with flammable propellant and intentional ignitions. Ship 20 also completed its first six-engine static fire 46 days after testing began. Ship 24, meanwhile, took 75 days to go from its first proof test to its first static fire – almost three times slower than Ship 20, a prototype that was essentially the first of its kind.

It’s possible that Ship 24’s upgraded Raptor 2 engines are partially or fully to blame. Instead of jumping straight into ‘hot’ Raptor testing like Ship 20, which began that particular campaign with a partial-ignition preburner test, SpaceX put Ship 24 through seven ‘spin-prime’ tests before its first static fire. For Raptor, spin-primes test the ignition step before preburner ignition, which is itself a step before main combustion chamber ignition (where the engine starts to produce meaningful thrust). Raptor startup procedures likely involve flowing high-pressure gaseous helium, nitrogen, or propellant (oxygen/methane) through the engine to spin up its turbopumps, ‘priming’ them for preburner and main combustion chamber ignition.

On Raptor 1, the preburners would ignite once a high enough flow rate was achieved, producing hot gas that the main combustion chamber would mix and ignite one last time to start the engine. In a recent interview with Tim Dodd (“The Everyday Astronaut”), CEO Elon Musk revealed that SpaceX was able to “remove torch igniters” from Raptor 2’s main combustion chamber (MCC). It’s unclear if that means that Raptor 2 now has zero MCC igniters, but a major change in the overall ignition process could explain why the start of Ship 24 and Booster 7 engine testing was so sluggish. So could the unintended explosion Booster 7 caused when SpaceX attempted to spin-prime all 33 of its Raptor 2 engines at once.

Advertisement

Regardless, SpaceX has finally crossed that particular Rubicon and, with any luck, Raptor 2 testing will begin to speed up on both Starship 24 and Super Heavy Booster 7. SpaceX has test windows scheduled on August 11th, 15th, and 16th. A warning distributed to Boca Chica, Texas residents on August 10th confirmed that the company intends to perform at least one more static fire test on the 11th.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX and xAI tapped by Pentagon for autonomous drone contest

The six-month competition was launched in January and is said to carry a $100 million award.

Published

on

Credit: SpaceX/X

SpaceX and its AI subsidiary xAI are reportedly competing in a new Pentagon prize challenge focused on autonomous drone swarming technology, as per a report from Bloomberg News

The six-month competition was launched in January and is said to carry a $100 million award.

Bloomberg reported that SpaceX and xAI are among a select group invited to participate in the Defense Department’s effort to develop advanced drone swarming capabilities. The goal is reportedly to create systems that can translate voice commands into digital instructions and manage fleets of autonomous drones.

Neither SpaceX, xAI, nor the Pentagon’s Defense Innovation Unit has commented on the report, and Reuters said it could not independently verify the details.

Advertisement

The development follows SpaceX’s recent acquisition of xAI, which pushed the valuation of the combined companies to an impressive $1.25 trillion. The reported competition comes as SpaceX prepares for a potential initial public offering later this year.

The Pentagon has been moving to speed up drone deployment and expand domestic manufacturing capacity, while also seeking tools to counter unauthorized drone activity around airports and major public events. Large-scale gatherings scheduled this year, including the FIFA World Cup and America250 celebrations, have heightened focus on aerial security.

The reported challenge aligns with broader Defense Department investments in artificial intelligence. Last year, OpenAI, Google, Anthropic, and xAI secured Pentagon contracts worth up to $200 million each to advance AI capabilities across defense applications.

Elon Musk previously joined AI and robotics researchers in signing a 2015 open letter calling for a ban on offensive autonomous weapons. In recent years, however, Musk has spoken on X about the strengths of drone technologies in combat situations.

Advertisement
Continue Reading

News

Doug DeMuro names Tesla Model S the Most Important Car of the last 30 years

In a recent video, the noted reviewer stated that the choice was “not even a question.”

Published

on

Popular automotive reviewer and YouTuber Doug DeMuro has named the 2012 Tesla Model S as the most important car of the last 30 years.

In a recent video, the noted reviewer stated that the choice was “not even a question,” arguing that the Model S did more to change the trajectory of the auto industry than any other vehicle released since the mid-1990s.

“Unquestionably in my mind, the number one most important car of the last 30 years… it’s not even a question,” DeMuro said. “The 2012 Tesla Model S. There is no doubt that that is the most important car of the last 30 years.”

DeMuro acknowledged that electric vehicle adoption has faced recent headwinds. Still, he maintained that long-term electrification is inevitable.

Advertisement

“If you’re a rational person who’s truthful with yourself, you know that the future is electric… whether it’s 10, 20, 30 years, the future will be electric, and it was the Model S that was the very first car that did that truthfully,” he said.

While earlier EVs like the Nissan Leaf and Chevrolet Volt arrived before the Model S, DeMuro argued that they did not fundamentally shift public perception. The Model S proved that EVs “could be cool, could be fast, could be luxurious, could be for enthusiasts.” It showed that buyers did not have to make major compromises to drive electric.

He also described the Model S as a cultural turning point. Tesla became more than a car company. The brand expanded into Superchargers, home energy products, and a broader tech identity.

DeMuro noted that the Leaf and Volt “made a huge splash and taught us that it was possible.” However, he drew a distinction between being first and bringing a technology into the mainstream.

Advertisement

“It’s rarely about the car that does it first. It’s about the car that brings it into the mainstream,” he said. “The Model S was the car that actually won the game even though the Leaf and Volt scored the first.”

He added that perhaps the Model S’ most surprising achievement was proving that a new American automaker could succeed. For decades, industry observers believed the infrastructure and capital requirements made that nearly impossible.

“For decades, it was generally agreed that there would never be another competitive American car company because the infrastructure and the investment required to start up another American car company as just too challenging… It was just a given basically that you couldn’t do it. And not only did they go it, but they created a cultural icon… That car just truly changed the world,” he said. 

Advertisement
Continue Reading

Elon Musk

Elon Musk doubles down on Tesla Cybercab timeline once again

“Cybercab, which has no pedals or steering wheel, starts production in April,” Musk said.

Published

on

Credit: @JT59052914/X

CEO Elon Musk doubled down once again on the timeline of production for the Tesla Cybercab, marking yet another example of the confidence he has in the company’s ability to meet the aggressive timeline for the vehicle.

It is the third time in the past six months that Musk has explicitly stated Cybercab will enter production in April 2026.

On Monday morning, Musk reiterated that Cybercab will enter its initial manufacturing phase in April, and that it would not have any pedals or a steering wheel, two things that have been speculated as potential elements of the vehicle, if needed.

Musk has been known to be aggressive with timelines, and some products have been teased for years and years before they finally come to fruition.

One of perhaps the biggest complaints about Musk is the fact that Tesla does not normally reach the deadlines that are set: the Roadster, Semi, and Unsupervised Full Self-Driving suite are a few of those that have been given “end of this year” timelines, but have not been fulfilled.

Nevertheless, many are able to look past this as part of the process. New technology takes time to develop, but we’d rather not hear about when, and just the progress itself.

However, the Cybercab is a bit different. Musk has said three times in the past six months that Cybercab will be built in April, and this is something that is sort of out of the ordinary for him.

In December 2025, he said that Tesla was “testing the production system” of the vehicle and that “real production ramp starts in April.

Elon Musk shares incredible detail about Tesla Cybercab efficiency

On January 23, he said that “Cybercab production starts in April.” He did the same on February 16, marking yet another occasion that Musk has his sights set on April for initial production of the vehicle.

Musk has also tempered expectations for the Cybercab’s initial production phase. In January, he noted that Cybercab would be subjected to the S-curve-type production speed:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Cybercab will be a huge part of Tesla’s autonomous ride-sharing plans moving forward.

Continue Reading