Connect with us

SpaceX

What SpaceX’s successful reuse of Dragon Spacecraft really means

Published

on

Following Saturday’s auspicious launch and and first stage recovery, SpaceX’s Dragon spacecraft has successfully rendezvoused and docked with the International Space Station. Bringing with it more than 5,000 pounds of food, water, scientific experiments, and technology demonstrations, the company’s eleventh mission under their first Commercial Resupply Services contract is exceptional for a very unique and specific reason: the vehicle has flown before, bringing cargo to the ISS on SpaceX’s fourth CRS mission to the ISS. This accomplishment makes the Dragon currently docked at the ISS the only commercial spacecraft in human history to be launched into orbit more than once, continuing a tradition of auspicious firsts.

CRS-11 just after liftoff. Note the core designation “35” under the landing leg. (SpaceX)

Slightly more than two months after the first ever successful reuse of an orbital-class rocket, SpaceX now has two extraordinary demonstrations of success in favor of the company’s pursuit of democratizing affordable access to space. Reusability is and has been SpaceX’s method of pursuing that goal for at least a decade, with Musk publicly exhorting the potential benefits of rapid and complete reusability as early as 2007. It is almost a running joke within the community of aerospace and SpaceX fans that Musk will compare commercial airlines to orbital launch services at least once every time he is interviewed, but his point is and has long been clear. If all one has to do to run a transportation service is refuel after every trip, the price of a ticket or cargo transport drastically decreases. While many have slyly laughed or dismissed this goal in the past, often using the Space Shuttle as an example of the futility of reusability as a tool for cost reduction, it is quite hard to deny what SpaceX has accomplished so far.

The reuse of a Cargo Dragon is also arguably far more significant than it may initially appear. SpaceX has not provided any concrete information on the process of refurbishing the capsule, and it is entirely unclear if the “reuse” entailed much more than furnishing the CRS-4 pressure vessel and Draco thrusters with a new trunk, solar array, external shell. It is possible that, just like SES-10, the process of refurbishing a spacecraft for the first time resulted in little to no cost savings, and that this refurbishment took anywhere from several months to more than a year, with the CRS-4 capsule returning from orbit in late 2014. However, given the absolute rarity of reused capsule-type spacecraft, the data that engineers likely gathered throughout the process of refurbishing the Dragon would arguably make the whole process worthwhile even in the worst case scenarios described above. Hans Koenigsmann, Vice President of Mission Assurance at SpaceX, also noted in a press conference following CRS-11’s launch that the refurbishment of the capsule was somewhat uneventful, stating that the CRS-4 capsule had no unanticipated damage from the rigors of reentry and ocean landing and that SpaceX was already ready to consider using the capsule a third time. It’s likely that SpaceX will begin to rely more heavily on Cargo Dragon reuse as they refocus a majority of their manufacturing efforts on Dragon 2.

SpaceX and Musk’s (in)famous ultimate ambitions are to make humanity a multiplanterary species, partly as a way to combat the extinction risks that an asteroid or comet strike pose, and partly because it is simply a staggering challenge that has the potential to make many humans “excited to wake up in the morning”. In order to make this happen, Musk saw that access to orbit was far too expensive for a colony on another planet to ever be sustainable, and that resuability was the only immediately obvious and accessible method through which the price to orbit could be decreased by several magnitudes. SpaceX is now almost routinely recovering Falcon 9 first stages when the mass of the payload allows it, and with a fifth and final version or “Block” of the vehicle optimized for rapid reuse set to debut later this year, Musk and others at the company have begun ruminating once more about the possibility of recovering and reusing the second stage of the Falcon 9. Benchmarked somewhere around 30% of the price of the vehicle, routine loss of the second stage effectively prevents the price of the Falcon 9 from dropping much below $20-30 million US dollars. While a nearly 50% or greater reduction in price would be an exceptional accomplishment, it is still far from from the multiple orders of magnitude reduction Musk hoped for when he set out to develop reusable rocketry.

A prototype of Dragon 2 being tested in an anechoic chamber. (SpaceX)

This is where the reuse of Dragon pops its head up. With second stage recovery now being considered theoretically and Dragon 2 (Crew Dragon) preparing to begin regular launches in either Q4 2017 or Q1 2018, SpaceX has a good deal of experience to gain from learning how to safely and rapidly recover and reuse vehicles reentering the atmosphere at orbital velocity. Compared to recovering the first stage, this is another endeavor entirely. The fastest speed at which a recoverable first stage can ever realistically reenter the atmosphere is currently capped at around 5200 mph (2300 m/s), and is usually much closer to 3000 mph. An orbital capsule like Dragon, however, enters the atmosphere from Low Earth Orbit (LEO) at around five times that speed, typically close to 16,000 mph. In the context of recovering the second stage of Falcon 9, one must consider that most of SpaceX’s commercial manifest is made up of geostationary satellites, which require more energy to reach a higher orbit, and consequently would require the second stage to survive even higher reentry velocities in order to be recovered.

Returning from Mars, as SpaceX’s Interplanetary Transport System would have to, results in even higher reentry velocities of at least 25,000 mph for a reasonably quick journey. This is the most important detail in explaining the true value of simply reusing a Dragon capsule as SpaceX has just now done. By taking its first steps towards routinely reusing truly orbital spacecraft, SpaceX is advancing their knowledge reusability in practice and consequently taking concrete steps to prepare themselves for the difficult challenges that lie ahead in their pursuance of enabling sustainable colonization of Mars. Dragon 2 (Crew Dragon) promises to eventually rid the refurbishment process of the many headaches that salt water intrusion undoubtedly creates by returning via supersonic retropropulsion to a landing pad, much like Core 35 did this past Saturday.

Looking slightly further into the future, SpaceX has already announced plans to launch two unnamed private customers in a Dragon 2 on what would likely be a circumlunar free return trajectory, or around the Moon and back. The reentry velocity would be very similar to the velocity required to return to Earth from Mars, and certainly much faster than any reentry from geostationary orbits of Earth. If SpaceX manages to successfully and reliably recover and reuse orbital vehicles reentering at such high velocities, then the company will have made extraordinarily promising progress towards achieving their central goal of drastically lowering cost to orbit and thus enabling humanity to gain footholds on other planets.

Advertisement

So, take this Dragon reuse as you will. It may well be a major step along the way to colonizing Mars, or it may simply be an exciting practical implementation of SpaceX’s philosophy of reuse. Either way, this is a Dragon that is certainly worth celebrating.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

FAA clears SpaceX for Starship Flight 10 after probe into Flight 9 mishap

SpaceX will attempt a Gulf splashdown for Flight 10 once more instead of a tower capture.

Published

on

Credit: SpaceX

The Federal Aviation Administration has closed its review of SpaceX’s Starship Flight 9 mishap, clearing the way for the next launch attempt as soon as August 24. 

Flight 9 ended with the loss of both the Super Heavy booster and the upper stage, but regulators accepted SpaceX’s findings that a fuel component failure was the root cause. No public safety concerns were reported from the incident.

Starship recovery lessons

SpaceX noted that Flight 9 marked the first reuse of a Super Heavy booster. Unlike prior attempts, the company did not try a tower “chopsticks” recovery, opting instead for an offshore return that ended in a destructive breakup. The upper stage was also lost over the Indian Ocean. 

As per the FAA in its statement, “There are no reports of public injury or damage to public property. The FAA oversaw and accepted the findings of the SpaceX-led investigation. The final mishap report cites the probable root cause for the loss of the Starship vehicle as a failure of a fuel component. SpaceX identified corrective actions to prevent a reoccurrence of the event.”

SpaceX also highlighted that Flight 9’s debris did not harm any wildlife. “SpaceX works with an experienced global response provider to retrieve any debris that may wash up in South Texas and/or Mexico as a result of Starship flight test operations. During the survey of the expected debris field from the booster, there was no evidence of any floating or deceased marine life that would signal booster debris impact harmed animals in the vicinity,” the private space company noted.

Advertisement

Expanding test objectives

To mitigate risks, SpaceX plans to adjust return angles for future flights and conduct additional landing burn tests on Flight 10. SpaceX will attempt a Gulf splashdown for Flight 10 once more, instead of a tower capture, according to a report from the Boston Herald.

The upcoming Starship Flight 10, which will be launching from Starbase in Texas, will also mark SpaceX’s attempt to perform its first payload deployment and an in-space Raptor relight. Despite recent setbacks, which include the last three flights ending with the upper stage experiencing a rapid unscheduled disassembly (RUD), Starship remains central to NASA’s Artemis program, with a variant tapped as the human landing system for Artemis III, the first since the Apollo program. 

Standing more than 400 feet tall and generating 16 million pounds of thrust, Starship remains the most powerful rocket flown, though it has yet to complete an orbital mission. The FAA has expanded SpaceX’s license to allow up to 25 Starship flights annually from Texas.

Continue Reading

News

Ukraine completes first Starlink direct-to-cell test in Eastern Europe

The trial was announced by the Ministry of Digital Transformation and Kyivstar’s parent company Veon, in a press release.

Published

on

Credit: SpaceX

Ukraine’s largest mobile operator, Kyivstar, has completed its first test of Starlink’s Direct to Cell satellite technology, enabling text messages to be sent directly from 4G smartphones without extra hardware. 

The trial was announced by the Ministry of Digital Transformation and Kyivstar’s parent company Veon in a press release.

First Eastern Europe field test

The Zhytomyr region hosted the pilot, where Deputy Prime Minister Mykhailo Fedorov and Kyivstar CEO Oleksandr Komarov exchanged texts and even made a brief video call via Starlink’s satellite link in northern Ukraine’s Zhytomyr region. 

Veon stated that the test marked Eastern Europe’s first field trial of the technology, which will allow Kyivstar’s 23 million subscribers to stay connected in areas without cellular coverage. The service will debut in fall 2025 with free text messaging during its testing phase.

“Our partnership with Starlink integrates terrestrial networks with satellite platforms, ensuring that nothing stands between our customers and connectivity – not power outages, deserts, mountains, floods, earthquakes, or even landmines,” Veon CEO Kaan Terzioglu stated.

Advertisement

Starlink in Ukraine

Kyivstar signed its Direct to Cell agreement with Starlink in December 2024, about a year after a major cyberattack disrupted service and caused nearly $100 million in damages, as noted in a report from the Kyiv Independent. Starlink technology has been a pivotal part of Ukraine’s defense against Russia in the ongoing conflict.

“Despite all the challenges of wartime, we continue to develop innovative solutions, because reliable communication under any circumstances and in any location is one of our key priorities. Therefore, this Kyivstar project is an example of effective partnership between the state, business, and technology companies, which opens the way to the future of communication without borders,” Mykhailo Fedorov, First Deputy Prime Minister of Ukraine, said.

Continue Reading

News

SpaceX is rolling out a new feature to Starlink that could be a lifesaver

Starlink now has a new Standby Mode that will enable low-speed internet access in the event of an outage.

Published

on

(Credit: Starlink | X)

SpaceX is rolling out a new feature to Starlink that could be a lifesaver in some instances, but more of a luxury for others.

Starlink is the satellite internet service that Elon Musk’s company SpaceX launched several years ago. It has been adopted by many people at their homes, many airlines on their planes, and many maritime companies on their ships.

SpaceX produces its 10 millionth Starlink kit

It has been a great way for customers to relieve themselves of the contracts and hidden fees of traditional internet service providers.

Now, Starlink is rolling out a new service feature on its units called “Standby Mode,” which is part of Pause Mode. The company notified customers of the change in an email:

“We’re reaching out to you to let you know the Pause feature on your plan has been updated. Pause now includes Standby Mode, which comes with unlimited low-speed data for $5.00 per month, perfect for backup connectivity and emergency use. These updates will take effect in 30 days. All of your other plan features remain the same. You are able to cancel your service at any time for no charge.”

SpaceX did not define how fast these “low speeds” will be. However, there are people who have tested the Standby Mode, and they reported speeds of about 500 kilobytes per second.

The mode is ideal for people who might deal with internet or power outages, but still need to have some sort of internet access.

It could also be used as a backup for people who want to stay with their ISP, but would like to have some sort of alternative in case of an outage for any reason.

Continue Reading

Trending