Connect with us

SpaceX

What SpaceX’s successful reuse of Dragon Spacecraft really means

Published

on

Following Saturday’s auspicious launch and and first stage recovery, SpaceX’s Dragon spacecraft has successfully rendezvoused and docked with the International Space Station. Bringing with it more than 5,000 pounds of food, water, scientific experiments, and technology demonstrations, the company’s eleventh mission under their first Commercial Resupply Services contract is exceptional for a very unique and specific reason: the vehicle has flown before, bringing cargo to the ISS on SpaceX’s fourth CRS mission to the ISS. This accomplishment makes the Dragon currently docked at the ISS the only commercial spacecraft in human history to be launched into orbit more than once, continuing a tradition of auspicious firsts.

CRS-11 just after liftoff. Note the core designation “35” under the landing leg. (SpaceX)

Slightly more than two months after the first ever successful reuse of an orbital-class rocket, SpaceX now has two extraordinary demonstrations of success in favor of the company’s pursuit of democratizing affordable access to space. Reusability is and has been SpaceX’s method of pursuing that goal for at least a decade, with Musk publicly exhorting the potential benefits of rapid and complete reusability as early as 2007. It is almost a running joke within the community of aerospace and SpaceX fans that Musk will compare commercial airlines to orbital launch services at least once every time he is interviewed, but his point is and has long been clear. If all one has to do to run a transportation service is refuel after every trip, the price of a ticket or cargo transport drastically decreases. While many have slyly laughed or dismissed this goal in the past, often using the Space Shuttle as an example of the futility of reusability as a tool for cost reduction, it is quite hard to deny what SpaceX has accomplished so far.

The reuse of a Cargo Dragon is also arguably far more significant than it may initially appear. SpaceX has not provided any concrete information on the process of refurbishing the capsule, and it is entirely unclear if the “reuse” entailed much more than furnishing the CRS-4 pressure vessel and Draco thrusters with a new trunk, solar array, external shell. It is possible that, just like SES-10, the process of refurbishing a spacecraft for the first time resulted in little to no cost savings, and that this refurbishment took anywhere from several months to more than a year, with the CRS-4 capsule returning from orbit in late 2014. However, given the absolute rarity of reused capsule-type spacecraft, the data that engineers likely gathered throughout the process of refurbishing the Dragon would arguably make the whole process worthwhile even in the worst case scenarios described above. Hans Koenigsmann, Vice President of Mission Assurance at SpaceX, also noted in a press conference following CRS-11’s launch that the refurbishment of the capsule was somewhat uneventful, stating that the CRS-4 capsule had no unanticipated damage from the rigors of reentry and ocean landing and that SpaceX was already ready to consider using the capsule a third time. It’s likely that SpaceX will begin to rely more heavily on Cargo Dragon reuse as they refocus a majority of their manufacturing efforts on Dragon 2.

SpaceX and Musk’s (in)famous ultimate ambitions are to make humanity a multiplanterary species, partly as a way to combat the extinction risks that an asteroid or comet strike pose, and partly because it is simply a staggering challenge that has the potential to make many humans “excited to wake up in the morning”. In order to make this happen, Musk saw that access to orbit was far too expensive for a colony on another planet to ever be sustainable, and that resuability was the only immediately obvious and accessible method through which the price to orbit could be decreased by several magnitudes. SpaceX is now almost routinely recovering Falcon 9 first stages when the mass of the payload allows it, and with a fifth and final version or “Block” of the vehicle optimized for rapid reuse set to debut later this year, Musk and others at the company have begun ruminating once more about the possibility of recovering and reusing the second stage of the Falcon 9. Benchmarked somewhere around 30% of the price of the vehicle, routine loss of the second stage effectively prevents the price of the Falcon 9 from dropping much below $20-30 million US dollars. While a nearly 50% or greater reduction in price would be an exceptional accomplishment, it is still far from from the multiple orders of magnitude reduction Musk hoped for when he set out to develop reusable rocketry.

A prototype of Dragon 2 being tested in an anechoic chamber. (SpaceX)

This is where the reuse of Dragon pops its head up. With second stage recovery now being considered theoretically and Dragon 2 (Crew Dragon) preparing to begin regular launches in either Q4 2017 or Q1 2018, SpaceX has a good deal of experience to gain from learning how to safely and rapidly recover and reuse vehicles reentering the atmosphere at orbital velocity. Compared to recovering the first stage, this is another endeavor entirely. The fastest speed at which a recoverable first stage can ever realistically reenter the atmosphere is currently capped at around 5200 mph (2300 m/s), and is usually much closer to 3000 mph. An orbital capsule like Dragon, however, enters the atmosphere from Low Earth Orbit (LEO) at around five times that speed, typically close to 16,000 mph. In the context of recovering the second stage of Falcon 9, one must consider that most of SpaceX’s commercial manifest is made up of geostationary satellites, which require more energy to reach a higher orbit, and consequently would require the second stage to survive even higher reentry velocities in order to be recovered.

Returning from Mars, as SpaceX’s Interplanetary Transport System would have to, results in even higher reentry velocities of at least 25,000 mph for a reasonably quick journey. This is the most important detail in explaining the true value of simply reusing a Dragon capsule as SpaceX has just now done. By taking its first steps towards routinely reusing truly orbital spacecraft, SpaceX is advancing their knowledge reusability in practice and consequently taking concrete steps to prepare themselves for the difficult challenges that lie ahead in their pursuance of enabling sustainable colonization of Mars. Dragon 2 (Crew Dragon) promises to eventually rid the refurbishment process of the many headaches that salt water intrusion undoubtedly creates by returning via supersonic retropropulsion to a landing pad, much like Core 35 did this past Saturday.

Advertisement

Looking slightly further into the future, SpaceX has already announced plans to launch two unnamed private customers in a Dragon 2 on what would likely be a circumlunar free return trajectory, or around the Moon and back. The reentry velocity would be very similar to the velocity required to return to Earth from Mars, and certainly much faster than any reentry from geostationary orbits of Earth. If SpaceX manages to successfully and reliably recover and reuse orbital vehicles reentering at such high velocities, then the company will have made extraordinarily promising progress towards achieving their central goal of drastically lowering cost to orbit and thus enabling humanity to gain footholds on other planets.

So, take this Dragon reuse as you will. It may well be a major step along the way to colonizing Mars, or it may simply be an exciting practical implementation of SpaceX’s philosophy of reuse. Either way, this is a Dragon that is certainly worth celebrating.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Musk bankers looking to trim xAI debt after SpaceX merger: report

xAI has built up $18 billion in debt over the past few years, with some of this being attributed to the purchase of social media platform Twitter (now X) and the creation of the AI development company. A new financing deal would help trim some of the financial burden that is currently present ahead of the plan to take SpaceX public sometime this year.

Published

on

Credit: SpaceX

Elon Musk’s bankers are looking to trim the debt that xAI has taken on over the past few years, following the company’s merger with SpaceX, a new report from Bloomberg says.

xAI has built up $18 billion in debt over the past few years, with some of this being attributed to the purchase of social media platform Twitter (now X) and the creation of the AI development company. Bankers are trying to create some kind of financing plan that would trim “some of the heavy interest costs” that come with the debt.

The financing deal would help trim some of the financial burden that is currently present ahead of the plan to take SpaceX public sometime this year. Musk has essentially confirmed that SpaceX would be heading toward an IPO last month.

SpaceX IPO is coming, CEO Elon Musk confirms

Advertisement

The report indicates that Morgan Stanley is expected to take the leading role in any financing plan, citing people familiar with the matter. Morgan Stanley, along with Goldman Sachs, Bank of America, and JPMorgan Chase & Co., are all expected to be in the lineup of banks leading SpaceX’s potential IPO.

Since Musk acquired X, he has also had what Bloomberg says is a “mixed track record with debt markets.” Since purchasing X a few years ago with a $12.5 billion financing package, X pays “tens of millions in interest payments every month.”

That debt is held by Bank of America, Barclays, Mitsubishi, UFJ Financial, BNP Paribas SA, Mizuho, and Société Générale SA.

X merged with xAI last March, which brought the valuation to $45 billion, including the debt.

Advertisement

SpaceX announced the merger with xAI earlier this month, a major move in Musk’s plan to alleviate Earth of necessary data centers and replace them with orbital options that will be lower cost:

“In the long term, space-based AI is obviously the only way to scale. To harness even a millionth of our Sun’s energy would require over a million times more energy than our civilization currently uses! The only logical solution, therefore, is to transport these resource-intensive efforts to a location with vast power and space. I mean, space is called “space” for a reason.”

The merger has many advantages, but one of the most crucial is that it positions the now-merged companies to fund broader goals, fueled by revenue from the Starlink expansion, potential IPO, and AI-driven applications that could accelerate the development of lunar bases.

Advertisement
Continue Reading

Elon Musk

SpaceX launches Crew-12 on Falcon 9, lands first booster at new LZ-40 pad

Beyond the crew launch, the mission also delivered a first for SpaceX’s Florida recovery operations.

Published

on

Credit: SpaceX/X

SpaceX opened February 13 with a dual milestone at Cape Canaveral, featuring a successful Crew-12 astronaut launch to the International Space Station (ISS) and the first Falcon 9 booster landing at the company’s newly designated Landing Zone 40 (LZ-40). 

A SpaceX Falcon 9 lifted off at 5:15 a.m. Eastern from Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station, placing the Crew Dragon Freedom into orbit on the Crew-12 mission. 

The spacecraft is carrying NASA astronauts Jessica Meir and Jack Hathaway, ESA astronaut Sophie Adenot, and Roscosmos cosmonaut Andrey Fedyaev, as noted in a report from Space News.

The flight marked NASA’s continued shift of Dragon crew operations to SLC-40. Historically, astronaut missions launched from Launch Complex 39A at Kennedy Space Center. NASA is moving Falcon 9 crew and cargo launches at SLC-40 to reserve 39A for Falcon Heavy missions and future Starship flights.

Advertisement

Crew-12 is scheduled to dock with the ISS on Feb. 14 and will remain in orbit for approximately eight months.

Beyond the crew launch, the mission also delivered a first for SpaceX’s Florida recovery operations. The Falcon 9 first stage returned to Earth and touched down at Landing Zone 40, a new pad built adjacent to SLC-40.

The site replaces Landing Zone 1, located several kilometers away, which has been reassigned by the U.S. Space Force to other launch providers. By bringing the landing area next to the launch complex, SpaceX is expected to reduce transport time and simplify processing between flights.

Bill Gerstenmaier, SpaceX’s vice president of build and flight reliability, stated that landing close to the pad keeps “launch and landing in the same general area,” improving efficiency. The company operates a similar side-by-side launch and landing configuration at Vandenberg Space Force Base in California.

Advertisement
Continue Reading

Elon Musk

Starlink terminals smuggled into Iran amid protest crackdown: report

Roughly 6,000 units were delivered following January’s unrest.

Published

on

Credit: Starlink/X

The United States quietly moved thousands of Starlink terminals into Iran after authorities imposed internet shutdowns as part of its crackdown on protests, as per information shared by U.S. officials to The Wall Street Journal

Roughly 6,000 units were delivered following January’s unrest, marking the first known instance of Washington directly supplying the satellite systems inside the country.

Iran’s government significantly restricted online access as demonstrations spread across the country earlier this year. In response, the U.S. purchased nearly 7,000 Starlink terminals in recent months, with most acquisitions occurring in January. Officials stated that funding was reallocated from other internet access initiatives to support the satellite deployment.

President Donald Trump was aware of the effort, though it remains unclear whether he personally authorized it. The White House has not issued a comment about the matter publicly.

Possession of a Starlink terminal is illegal under Iranian law and can result in significant prison time. Despite this, the WSJ estimated that tens of thousands of residents still rely on the satellite service to bypass state controls. Authorities have reportedly conducted inspections of private homes and rooftops to locate unauthorized equipment.

Advertisement

Earlier this year, Trump and Elon Musk discussed maintaining Starlink access for Iranians during the unrest. Tehran has repeatedly accused Washington of encouraging dissent, though U.S. officials have mostly denied the allegations.

The decision to prioritize Starlink sparked internal debate within U.S. agencies. Some officials argued that shifting resources away from Virtual Private Networks (VPNs) could weaken broader internet access efforts. VPNs had previously played a major role in keeping Iranians connected during earlier protest waves, though VPNs are not effective when the actual internet gets cut.

According to State Department figures, about 30 million Iranians used U.S.-funded VPN services during demonstrations in 2022. During a near-total blackout in June 2025, roughly one-fifth of users were still able to access limited connectivity through VPN tools.

Critics have argued that satellite access without VPN protection may expose users to geolocation risks. After funds were redirected to acquire Starlink equipment, support reportedly lapsed for two of five VPN providers operating in Iran.

Advertisement

A State Department official has stated that the U.S. continues to back multiple technologies,  including VPNs alongside Starlink, to sustain people’s internet access amidst the government’s shutdowns.

Continue Reading