Connect with us

News

Startup fined $900k for launching illegal satellites, points to future space law challenges

Published

on

Swarm Technologies, Inc., a satellite startup aiming to create the world’s lowest-cost satellite network, has been fined $900,000 by the U.S. Federal Communications Commission (FCC) for illegally launching and deploying four unauthorized satellites into orbit in January 2018 on a commercial Indian satellite launch vehicle. The satellites in question were Swarm’s SpaceBEE vehicles, which measure one quarter the size of a traditional CubeSat, a class of small satellites measuring 10 cm in height, width, and depth. In December 2017, the FCC deemed the SpaceBEE size too small for the U.S. Air Force’s traditional technology to track with routine methods and declined a license, but the satellites were placed into orbit regardless. With satellite and rocket launch startups proliferating as space access becomes more affordable, the debate over ensuring safety in this international arena is likely expand.

Swarm requested an experimental license from the FCC in April 2017, a first step for any satellite operator to ensure compliance with current international space laws, and their plan was to launch in September 2017, although that date was later delayed. Spaceflight Industries was next hired to connect Swarm with a launch provider and ensure its integration with the rest of the rocket’s payload. After the FCC declined the license in December 2017, Swarm applied for a new license in January 2018 for satellites meeting CubeSat specifications, but the original SpaceBEEs were already loaded onto the contracted Indian Polar Satellite Launch Vehicle (PSLV) and subsequently launched on January 12, 2018.

When news of the SpaceBEE deployment broke, concerns over regulatory backlash spread throughout the satellite community. The FCC issued an Enforcement Advisory on April 12, 2018 warning about consequences for communications companies failing to comply with licensing requirements, including a note to launch providers on how launch activities may be impacted if an unauthorized satellite payload needs to be removed. In a decision released December 20, 2018, Swarm Technologies was ordered to pay the fine and implement a five-year compliance plan.

A depiction of Swarm’s SpaceBEE satellites, from their FCC license application. | Credit: Swarm Technologies/FCC

Since the very first satellite was successfully launched by the Soviet Union on October 4, 1957, activities in space have been largely conducted by national governments and companies affiliated with them. However, the new space era is quickly changing that environment, rapidly opening up the beyond-Earth domain to private citizens. Billionaires like Elon Musk of Tesla and SpaceX, Jeff Bezos of Amazon and Blue Origin, and Richard Branson of Virgin and Virgin Galactic have mostly been the face of private/commercial space industry in recent years, but the technologies they’ve developed are also ushering in a new wave of affordable access to space, and with it, new technologies that don’t fit the traditional mold of “old space”.

The legal foundation for current space laws is the 1967 Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies, i.e., the “Outer Space Treaty”. Under this Treaty and subsequent treaties and laws arising from it, states, or nations, rather, are responsible for any space activities conducted by their own nationals, meaning a regulatory process that must be enforced. Where access to space was once expensive and difficult, the significantly lowered threshold has brought in a field full of players ready to take their shot at participating in the coming space economy and maybe, as seen with Swarm Technologies, even take a few risks to get there.

While the illegal launch of Swarm’s satellites was caught rather quickly (first by the community of amateur space trackers) and action was taken to penalize it, what’s to stop nations in the future from lowering standards to attract private customers? As stated in the FCC’s Enforcement Advisory, “Satellites authorized by an administration other than the United States do not require any FCC approval if Earth station operations are exclusively outside the United States.” Pressure from the international community to comply with treaties will only work to the extent that 1) the penalties deter the profit potential from the industry; 2) the international community agrees the activity is actually unsafe; and 3) the resistance to reforming regulations to permit the activity in question is deemed justified. Innovation, especially out of Silicon Valley, has a history of breaking rules to bring about significant change; however, some would argue that space isn’t the place for that approach.

Advertisement
-->
The thrice-flown, Falcon 9 Block 5 rocket that put Swarm’s recent 3 satellites in orbit (all FCC approved): SpaceBEE-5, 6, and 7. | Credit: Pauline Acalin

The problem seems to be a simple matter of ethics: Don’t launch things into space that aren’t safe for Earth’s occupants. But according to the FCC, Swarm’s proposed satellites were merely “below the size threshold at which detection by the Space Surveillance Network (SSN) can be considered routine.” The licensing issue seemed to generally only be safety-related because of the satellites’ irregularity, not from the lack of actual tracking capability, something that is only going to increase as more players enter the new space arena.

Another point worth consideration is that Swarm’s SpaceBEE satellites are actually trackable using the same SSN network the FCC cited in its rejection of Swarm’s license request, and live tracking is ongoing via an independent tracking service called LeoLabs. According to Dr. Sara Spangelo, one of the co-founders of Swarm Technologies, the satellites are equipped with radar retro-reflector technology, something developed by a US-Navy research and development lab, which makes their radar signature as bright as a CubeSat. The FCC has also granted the company a temporary experimental authorization to test the previously-illegal satellites’ orbital and tracking data. Thus, the question for the future is not so much whether the safety concerns are valid, but whether preventative rules will be waived where newer technology can demonstrate their compliance outside traditional standards.

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading